未验证 提交 1137677a 编写于 作者: H houj04 提交者: GitHub

[XPU] rmsprop to phi. (#45734)

上级 269bd1fe
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <gflags/gflags.h>
#include <iostream>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace paddle {
namespace operators {
static inline float GetAttrFromTensor(const framework::Tensor* tensor) {
const float* tensor_data = tensor->data<float>();
framework::Tensor cpu_tensor;
if (platform::is_gpu_place(tensor->place()) ||
platform::is_xpu_place(tensor->place())) {
paddle::framework::TensorCopySync(
*tensor, platform::CPUPlace(), &cpu_tensor);
tensor_data = cpu_tensor.data<float>();
}
return tensor_data[0];
}
using framework::OpKernelType;
using framework::Tensor;
template <typename DeviceContext, typename T>
class RmspropOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using paddle::framework::LoDTensor;
// check Param & Grad tensor type
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<LoDTensor>(),
true,
platform::errors::InvalidArgument(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
const auto* grad_var = ctx.InputVar("Grad");
PADDLE_ENFORCE_EQ(grad_var->IsType<LoDTensor>(),
true,
platform::errors::InvalidArgument(
"Tensor holds the wrong type,Expected Var(%s)'s "
"type is LoDTensor, "
"but the received is %s",
ctx.InputNames("Grad").front(),
framework::ToTypeName(grad_var->Type())));
// inputs
auto& param = GET_DATA_SAFELY(
ctx.Input<LoDTensor>("Param"), "Input", "Param", "Rmsprop");
auto& meanSquare = GET_DATA_SAFELY(
ctx.Input<LoDTensor>("MeanSquare"), "Input", "MeanSquare", "Rmsprop");
auto& grad = GET_DATA_SAFELY(
ctx.Input<LoDTensor>("Grad"), "Input", "Grad", "Rmsprop");
auto& mom = GET_DATA_SAFELY(
ctx.Input<LoDTensor>("Moment"), "Input", "Moment", "Rmsprop");
auto* learning_rate = ctx.Input<Tensor>("LearningRate");
PADDLE_ENFORCE_EQ(learning_rate->dims().size(),
1,
platform::errors::InvalidArgument(
"learining rate should have dimension = 1."
" But received learning rate dim [%s] ",
learning_rate->dims().size()));
T lr = static_cast<T>(GetAttrFromTensor(learning_rate));
// constants
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
T decay = static_cast<T>(ctx.Attr<float>("decay"));
T momentum = static_cast<T>(ctx.Attr<float>("momentum"));
bool centered = ctx.Attr<bool>("centered");
PADDLE_ENFORCE_EQ(centered,
false,
platform::errors::Unimplemented(
"centered=True is not supported in the xpu kernel of "
"rmsprop. use XPU_BLACK_LIST to disable this op."));
/*
TODO(houj04): when XDNN api supports 'center', add input of
mean_grad_input and output of mean_grad_output. auto *mean_grad_input =
ctx.Input<Tensor>("MeanGrad"); auto *mean_grad_output =
ctx.Output<Tensor>("MeanGradOut");
*/
// outputs
auto& param_out = GET_DATA_SAFELY(
ctx.Output<LoDTensor>("ParamOut"), "Output", "ParamOut", "Rmsprop");
auto& mom_out = GET_DATA_SAFELY(
ctx.Output<LoDTensor>("MomentOut"), "Output", "MomentOut", "Rmsprop");
auto& mom_sqrt_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("MeanSquareOut"),
"Output",
"MeanSquareOut",
"Rmsprop");
auto& dev_ctx = ctx.template device_context<DeviceContext>();
// int rmsprop(Context* ctx, const T* g, const T* p, const float* ms, const
// float* mom, T* p_out, float* ms_out, float* mom_out, float epsilon, float
// rho, float momentum, float lr, int n);
int r = xpu::rmsprop(dev_ctx.x_context(),
grad.template data<T>(),
param.template data<T>(),
meanSquare.template data<T>(),
mom.template data<T>(),
param_out.template mutable_data<T>(ctx.GetPlace()),
mom_sqrt_out.template mutable_data<T>(ctx.GetPlace()),
mom_out.template mutable_data<T>(ctx.GetPlace()),
epsilon,
decay,
momentum,
lr,
param.numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "rmsprop");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
rmsprop,
ops::RmspropOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/rmsprop_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/fluid/memory/memcpy.h"
namespace phi {
template <typename T, typename Context>
void RmspropDenseKernel(const Context& dev_ctx,
const DenseTensor& param,
const DenseTensor& mean_square,
const DenseTensor& grad,
const DenseTensor& moment,
const DenseTensor& learning_rate,
const paddle::optional<DenseTensor>& mean_grad,
float epsilon,
float decay,
float momentum,
bool centered,
DenseTensor* param_out,
DenseTensor* moment_out,
DenseTensor* mean_square_out,
DenseTensor* mean_grad_out) {
// check input
PADDLE_ENFORCE_EQ(centered,
false,
errors::Unimplemented(
"centered=True is not supported in the xpu kernel of "
"rmsprop. use XPU_BLACK_LIST to disable this op."));
// copy learning_rate to cpu
PADDLE_ENFORCE_EQ(
learning_rate.dims().size(),
1,
errors::InvalidArgument("learining rate should have dimension = 1."
" But received learning rate dim [%s] ",
learning_rate.dims().size()));
T learning_rate_cpu = 0.0f;
paddle::memory::Copy(CPUPlace(),
static_cast<void*>(&learning_rate_cpu),
dev_ctx.GetPlace(),
static_cast<const void*>(learning_rate.data()),
sizeof(T));
// alloc output
dev_ctx.template Alloc<T>(param_out);
dev_ctx.template Alloc<T>(moment_out);
dev_ctx.template Alloc<T>(mean_square_out);
// int rmsprop(Context* ctx, const T* g, const T* p, const float* ms, const
// float* mom, T* p_out, float* ms_out, float* mom_out, float epsilon, float
// rho, float momentum, float lr, int n);
int r = xpu::rmsprop(dev_ctx.x_context(),
grad.data<T>(),
param.data<T>(),
mean_square.data<T>(),
moment.data<T>(),
param_out->data<T>(),
mean_square_out->data<T>(),
moment_out->data<T>(),
epsilon,
decay,
momentum,
learning_rate_cpu,
param.numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "rmsprop");
}
} // namespace phi
PD_REGISTER_KERNEL(rmsprop, XPU, ALL_LAYOUT, phi::RmspropDenseKernel, float) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册