未验证 提交 1105ecf8 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #11508 from typhoonzero/transpiler_doc

Transpiler doc
#!/bin/bash
python gen_doc.py layers --submodules control_flow device io nn ops tensor detection learning_rate_scheduler metric > layers.rst
for module in data_feeder clip metrics executor initializer io nets optimizer param_attr profiler regularizer
for module in data_feeder clip metrics executor initializer io nets optimizer param_attr profiler regularizer transpiler
do
python gen_doc.py ${module} > ${module}.rst
done
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
==========
transpiler
==========
DistributeTranspiler
--------------------
.. autoclass:: paddle.fluid.transpiler.DistributeTranspiler
:members:
:noindex:
InferenceTranspiler
-------------------
.. autoclass:: paddle.fluid.transpiler.InferenceTranspiler
:members:
:noindex:
memory_optimize
---------------
.. autofunction:: paddle.fluid.transpiler.memory_optimize
:noindex:
release_memory
--------------
.. autofunction:: paddle.fluid.transpiler.release_memory
:noindex:
HashName
--------
.. autoclass:: paddle.fluid.transpiler.HashName
:members:
:noindex:
RoundRobin
----------
.. autoclass:: paddle.fluid.transpiler.RoundRobin
:members:
:noindex:
......@@ -12,14 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.
Use different methods to split trainable variables to different
parameter servers.
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
......@@ -117,129 +109,41 @@ def slice_variable(var_list, slice_count, min_block_size=8192):
return blocks
class DistributeTranspiler:
def _has_distributed_lookup_table(self):
# process lookup_table_op
# 1. check all lookup_table_op is distributed
# 2. check all lookup_table_op share the same table.
distributed_lookup_table_ops = []
# support only one distributed_lookup_table now
self.table_name = None
for op in self.origin_program.global_block().ops:
if op.type == LOOKUP_TABLE_TYPE:
if op.attrs['is_distributed'] is True:
if self.table_name is None:
self.table_name = op.input("W")[0]
if self.table_name != op.input("W")[0]:
raise RuntimeError("all distributed lookup_table_ops"
" should have only one table")
distributed_lookup_table_ops.append(op)
else:
if self.table_name is not None:
assert op.input("W")[0] != self.table_name
return len(distributed_lookup_table_ops) > 0
def _update_dist_lookup_table_vars(self, param_list, grad_list,
params_grads):
# TODO(wuyi): put find a way to put dist lookup table stuff all together.
# update self.table_param_grad and self.trainer_side_table_grad_list
program = self.origin_program
if self.has_distributed_lookup_table:
param_list = [
param for param in param_list if param.name != self.table_name
]
grad_list = [
grad for grad in grad_list
if grad.name != grad_var_name(self.table_name)
]
self.table_param_grad = [
param_grad for param_grad in params_grads
if param_grad[0].name == self.table_name
][0]
table_grad_var = self.table_param_grad[1]
if self.sync_mode:
self.trainer_side_table_grad_list = [
program.global_block().create_var(
name="%s.trainer_%d.pserver_%d" %
(table_grad_var.name, self.trainer_id, index),
type=table_grad_var.type,
shape=table_grad_var.shape,
dtype=table_grad_var.dtype)
for index in range(len(self.pserver_endpoints))
]
else:
self.trainer_side_table_grad_list = [
program.global_block().create_var(
name="%s.pserver_%d" % (table_grad_var.name, index),
type=table_grad_var.type,
shape=table_grad_var.shape,
dtype=table_grad_var.dtype)
for index in range(len(self.pserver_endpoints))
]
return param_list, grad_list
def _init_splited_vars(self, slice_var_up):
# update these mappings for further transpile:
# 1. param_var_mapping: param var name -> [splited params vars]
# 2. grad_var_mapping: grad var name -> [splited grads vars]
# 3. grad_param_mapping: grad.blockx -> param.blockx
# 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}
param_list = []
grad_list = []
param_grad_set = set()
for p, g in self.params_grads:
# skip parameter marked not trainable
if type(p) == Parameter and p.trainable == False:
continue
if p.name not in param_grad_set:
param_list.append(p)
param_grad_set.add(p.name)
if g.name not in param_grad_set:
grad_list.append(g)
param_grad_set.add(g.name)
param_list, grad_list = self._update_dist_lookup_table_vars(
param_list, grad_list, self.params_grads)
if slice_var_up:
# when we slice var up into blocks, we will slice the var according to
# pserver services' count. A pserver may have two or more listening ports.
grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints))
param_blocks = slice_variable(param_list,
len(self.pserver_endpoints))
else:
# when we do NOT slice var up into blocks, we will always slice params
# grads into one block.
grad_blocks = slice_variable(grad_list, 1)
param_blocks = slice_variable(param_list, 1)
assert (len(grad_blocks) == len(param_blocks))
# origin_varname -> [splited_var]
self.param_var_mapping = self._create_vars_from_blocklist(
self.origin_program, param_blocks)
self.grad_var_mapping = self._create_vars_from_blocklist(
self.origin_program,
grad_blocks,
add_trainer_suffix=self.trainer_num > 1)
self.grad_param_mapping = dict()
for g, p in zip(grad_blocks, param_blocks):
g_name, g_bid, _ = g.split(":")
p_name, p_bid, _ = p.split(":")
self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
self.param_var_mapping[p_name][int(p_bid)]
# create mapping of endpoint -> split var to create pserver side program
self.param_grad_ep_mapping = dict()
[
self.param_grad_ep_mapping.update({
ep: {
"params": [],
"grads": []
}
}) for ep in self.pserver_endpoints
]
class DistributeTranspiler(object):
"""
**DistributeTranspiler**
Convert the fluid program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.
Examples:
.. code-block:: python
# Define your model before these codes.
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist)
trainers = int(os.getenv("PADDLE_TRAINERS"))
current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
role = os.getenv("PADDLE_TRAINING_ROLE")
t = distribute_transpiler.DistributeTranspiler()
t.transpile(
trainer_id, pservers=pserver_endpoints, trainers=trainers)
if role == "PSERVER":
pserver_program = t.get_pserver_program(current_endpoint)
pserver_startup_program = t.get_startup_program(current_endpoint,
pserver_program)
elif role == "TRAINER":
trainer_program = t.get_trainer_program()
"""
def transpile(self,
trainer_id,
......@@ -250,20 +154,20 @@ class DistributeTranspiler:
split_method=RoundRobin,
sync_mode=True):
"""
:param trainer_id: one unique id for each trainer in a job.
:type trainer_id: int
:param program: program to transpile, default is default_main_program
:type program: Program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:param trainers: total number of workers/trainers in the job
:type trainers: int
:param split_method: A function to determin how to split variables
to different servers equally.
:type split_method: function
:type sync_mode: boolean default True
:param sync_mode: if sync_mode is set True, it means that dist transpiler
will transpile the program into sync_mode pserver and trainer program.
Run the transpiler.
Args:
trainer_id (int): id for current trainer worker, if you have
n workers, the id may range from 0 ~ n-1
program (Program|None): program to transpile,
default is fluid.default_main_program().
pservers (str): comma separated ip:port string for the pserver
list.
trainers (int): number of trainers in the distributed job.
slice_var_up (bool): Do Tensor slice for pservers, default is True.
split_method (PSDispatcher): RoundRobin or HashName can be used
try to choose the best method to balance loads for pservers.
sync_mode (bool): Do sync training or not, default is True.
"""
assert (split_method.__bases__[0] == PSDispatcher)
if program is None:
......@@ -390,6 +294,12 @@ class DistributeTranspiler:
self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
def get_trainer_program(self):
"""
Get transpiled trainer side program.
Returns:
Program: trainer side program.
"""
# remove optimize ops and add a send op to main_program
delete_ops(self.origin_program.global_block(), self.optimize_ops)
# FIXME(typhoonzero): serialize once will fix error occurs when clone.
......@@ -398,12 +308,19 @@ class DistributeTranspiler:
def get_pserver_program(self, endpoint):
"""
Get pserver side program using the endpoint.
TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
NOTE: assume blocks of the same variable is not distributed
on the same pserver, only change param/grad varnames for
trainers to fetch.
Get parameter server side program.
Args:
endpoint (str): current parameter server endpoint.
Returns:
Program: the program for current parameter server to run.
"""
# TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
# NOTE: assume blocks of the same variable is not distributed
# on the same pserver, only change param/grad varnames for
# trainers to fetch.
# step1
pserver_program = Program()
# step2: Create vars to receive vars at parameter servers.
......@@ -582,6 +499,14 @@ class DistributeTranspiler:
Get startup program for current parameter server.
Modify operator input variables if there are variables that
were split to several blocks.
Args:
endpoint (str): current pserver endpoint.
pserver_program (Program): call get_pserver_program first and
pass the result here.
Returns:
Program: parameter server side startup program.
"""
s_prog = Program()
orig_s_prog = default_startup_program()
......@@ -633,6 +558,129 @@ class DistributeTranspiler:
# ====================== private transpiler functions =====================
def _has_distributed_lookup_table(self):
# process lookup_table_op
# 1. check all lookup_table_op is distributed
# 2. check all lookup_table_op share the same table.
distributed_lookup_table_ops = []
# support only one distributed_lookup_table now
self.table_name = None
for op in self.origin_program.global_block().ops:
if op.type == LOOKUP_TABLE_TYPE:
if op.attrs['is_distributed'] is True:
if self.table_name is None:
self.table_name = op.input("W")[0]
if self.table_name != op.input("W")[0]:
raise RuntimeError("all distributed lookup_table_ops"
" should have only one table")
distributed_lookup_table_ops.append(op)
else:
if self.table_name is not None:
assert op.input("W")[0] != self.table_name
return len(distributed_lookup_table_ops) > 0
def _update_dist_lookup_table_vars(self, param_list, grad_list,
params_grads):
# TODO(wuyi): put find a way to put dist lookup table stuff all together.
# update self.table_param_grad and self.trainer_side_table_grad_list
program = self.origin_program
if self.has_distributed_lookup_table:
param_list = [
param for param in param_list if param.name != self.table_name
]
grad_list = [
grad for grad in grad_list
if grad.name != grad_var_name(self.table_name)
]
self.table_param_grad = [
param_grad for param_grad in params_grads
if param_grad[0].name == self.table_name
][0]
table_grad_var = self.table_param_grad[1]
if self.sync_mode:
self.trainer_side_table_grad_list = [
program.global_block().create_var(
name="%s.trainer_%d.pserver_%d" %
(table_grad_var.name, self.trainer_id, index),
type=table_grad_var.type,
shape=table_grad_var.shape,
dtype=table_grad_var.dtype)
for index in range(len(self.pserver_endpoints))
]
else:
self.trainer_side_table_grad_list = [
program.global_block().create_var(
name="%s.pserver_%d" % (table_grad_var.name, index),
type=table_grad_var.type,
shape=table_grad_var.shape,
dtype=table_grad_var.dtype)
for index in range(len(self.pserver_endpoints))
]
return param_list, grad_list
def _init_splited_vars(self, slice_var_up):
# update these mappings for further transpile:
# 1. param_var_mapping: param var name -> [splited params vars]
# 2. grad_var_mapping: grad var name -> [splited grads vars]
# 3. grad_param_mapping: grad.blockx -> param.blockx
# 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}
param_list = []
grad_list = []
param_grad_set = set()
for p, g in self.params_grads:
# skip parameter marked not trainable
if type(p) == Parameter and p.trainable == False:
continue
if p.name not in param_grad_set:
param_list.append(p)
param_grad_set.add(p.name)
if g.name not in param_grad_set:
grad_list.append(g)
param_grad_set.add(g.name)
param_list, grad_list = self._update_dist_lookup_table_vars(
param_list, grad_list, self.params_grads)
if slice_var_up:
# when we slice var up into blocks, we will slice the var according to
# pserver services' count. A pserver may have two or more listening ports.
grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints))
param_blocks = slice_variable(param_list,
len(self.pserver_endpoints))
else:
# when we do NOT slice var up into blocks, we will always slice params
# grads into one block.
grad_blocks = slice_variable(grad_list, 1)
param_blocks = slice_variable(param_list, 1)
assert (len(grad_blocks) == len(param_blocks))
# origin_varname -> [splited_var]
self.param_var_mapping = self._create_vars_from_blocklist(
self.origin_program, param_blocks)
self.grad_var_mapping = self._create_vars_from_blocklist(
self.origin_program,
grad_blocks,
add_trainer_suffix=self.trainer_num > 1)
self.grad_param_mapping = dict()
for g, p in zip(grad_blocks, param_blocks):
g_name, g_bid, _ = g.split(":")
p_name, p_bid, _ = p.split(":")
self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
self.param_var_mapping[p_name][int(p_bid)]
# create mapping of endpoint -> split var to create pserver side program
self.param_grad_ep_mapping = dict()
[
self.param_grad_ep_mapping.update({
ep: {
"params": [],
"grads": []
}
}) for ep in self.pserver_endpoints
]
# transpiler function for dis lookup_table
def _replace_lookup_table_op_with_prefetch(self, program,
pserver_endpoints):
......
......@@ -33,15 +33,21 @@ class PSDispatcher(object):
def dispatch(self, varlist):
"""
:param varlist: a list of Variables
:return: a map of pserver endpoint -> varname
Args:
varlist(list): a list of Variables
Returns:
a map of pserver endpoint -> varname
"""
AssertionError("Interface has not been implemented.")
class HashName(PSDispatcher):
"""
Hash variable names to several endpoints
Hash variable names to several endpoints using python
"hash()" function.
Args:
pserver_endpoints (list): list of endpoint(ip:port).
"""
def __init__(self, pserver_endpoints):
......@@ -61,7 +67,11 @@ class HashName(PSDispatcher):
class RoundRobin(PSDispatcher):
"""
Distribute variables to serveral endpoints.
Distribute variables to serveral endpoints using
RondRobin<https://en.wikipedia.org/wiki/Round-robin_scheduling> method.
Args:
pserver_endpoints (list): list of endpoint(ip:port).
"""
def __init__(self, pserver_endpoints):
......
......@@ -291,6 +291,8 @@ class DocstringChecker(BaseChecker):
True if successful otherwise False.
"""
if node.name.startswith("__") or node.name.startswith("_"):
return True
find = False
for t in node.body:
if not isinstance(t, astroid.Return):
......@@ -316,6 +318,8 @@ class DocstringChecker(BaseChecker):
Returns:
True if successful otherwise False.
"""
if node.name.startswith("__") or node.name.startswith("_"):
return True
args = []
for arg in node.args.get_children():
if (not isinstance(arg, astroid.AssignName)) \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册