提交 10eacac9 编写于 作者: C caoying03

follow comments and fix unittest.

上级 c2c5df29
...@@ -55,7 +55,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍 ...@@ -55,7 +55,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
# 线性计算网络层: ȳ = wx + b # 线性计算网络层: ȳ = wx + b
ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b')) ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
# 计算误差函数,即 ȳ 和真实 y 之间的距离 # 计算误差函数,即 ȳ 和真实 y 之间的距离
cost = mse_cost(input= ȳ, label=y) cost = square_error_cost(input= ȳ, label=y)
outputs(cost) outputs(cost)
...@@ -69,7 +69,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍 ...@@ -69,7 +69,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
- **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x` 和 `y`。 - **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x` 和 `y`。
- **全连接层**:全连接层 `fc_layer` 是基础的计算单元,这里利用它建模变量之间的线性关系。计算单元是神经网络的核心,PaddlePaddle支持大量的计算单元和任意深度的网络连接,从而可以拟合任意的函数来学习复杂的数据关系。 - **全连接层**:全连接层 `fc_layer` 是基础的计算单元,这里利用它建模变量之间的线性关系。计算单元是神经网络的核心,PaddlePaddle支持大量的计算单元和任意深度的网络连接,从而可以拟合任意的函数来学习复杂的数据关系。
- **回归误差代价层**:回归误差代价层 `mse_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。 - **回归误差代价层**:回归误差代价层 `square_error_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令: 定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令:
......
...@@ -83,7 +83,7 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和 ...@@ -83,7 +83,7 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
cost = paddle.layer.square_error_cost(input=y_predict, label=y) cost = paddle.layer.square_error_cost(input=y_predict, label=y)
其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上方误差层。 其中,x与y为之前描述的输入层;而y_predict是接收x作为输入,接上一个全连接层;cost接收y_predict与y作为输入,接上方误差层。
最后一层cost中记录了神经网络的所有拓扑结构,通过组合不同的layer,我们即可完成神经网络的搭建。 最后一层cost中记录了神经网络的所有拓扑结构,通过组合不同的layer,我们即可完成神经网络的搭建。
......
...@@ -134,8 +134,9 @@ class CostLayerTest(unittest.TestCase): ...@@ -134,8 +134,9 @@ class CostLayerTest(unittest.TestCase):
cost3 = layer.cross_entropy_cost(input=inference, label=label) cost3 = layer.cross_entropy_cost(input=inference, label=label)
cost4 = layer.cross_entropy_with_selfnorm_cost( cost4 = layer.cross_entropy_with_selfnorm_cost(
input=inference, label=label) input=inference, label=label)
cost5 = layer.mse_cost(input=inference, label=label) cost5 = layer.square_error_cost(input=inference, label=label)
cost6 = layer.mse_cost(input=inference, label=label, weight=weight) cost6 = layer.square_error_cost(
input=inference, label=label, weight=weight)
cost7 = layer.multi_binary_label_cross_entropy_cost( cost7 = layer.multi_binary_label_cross_entropy_cost(
input=inference, label=label) input=inference, label=label)
cost8 = layer.rank_cost(left=score, right=score, label=score) cost8 = layer.rank_cost(left=score, right=score, label=score)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册