提交 0f0d4823 编写于 作者: T tensor-tang

add fusion seq_concat_fc op test

上级 c45cee03
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
from test_fusion_lstm_op import fc, ACTIVATION
def fusion_seqexpand_concat_fc(xs, lod, w, b, fc_act):
T = sum(lod[0])
N = len(lod[0])
num_inputs = len(xs)
D = w.shape[1]
expanded_inputs = [xs[0]]
for i in range(num_inputs - 1):
x = xs[i + 1]
assert x.shape[0] == N
expanded = np.repeat(x, lod[0], axis=0)
assert expanded.shape[0] == T
assert expanded.shape[1] == x.shape[1]
expanded_inputs.append(expanded)
fc_input = np.concatenate(expanded_inputs, axis=1)
assert fc_input.shape[0] == T
assert fc_input.shape[1] == w.shape[0]
fc_out = fc(fc_input, w, b)
fc_out = fc_act(fc_out)
assert fc_out.shape[0] == T
assert fc_out.shape[1] == D
return fc_out
class TestFusionSeqExpandConcatFCOp(OpTest):
def set_conf(self):
pass
def setUp(self):
self.op_type = 'fusion_seq_concat_fc'
self.lod = [[3, 5, 8, 2]]
self.inputs_M = [15, 10, 10]
self.D = 20
self.with_bias = True
self.fc_act = 'relu'
self.set_conf()
T = sum(self.lod[0])
bs = len(self.lod[0])
num_inputs = len(self.inputs_M)
x0 = np.random.normal(size=(T, self.inputs_M[0])).astype('float32')
xs = [x0]
for i in range(num_inputs - 1):
xi = np.random.normal(size=(bs,
self.inputs_M[i + 1])).astype('float32')
xs.append(xi)
# fc weight and bias
w = np.random.normal(size=(sum(self.inputs_M),
self.D)).astype('float32')
b = np.random.normal(size=(
1, self.D)).astype('float32') if self.with_bias else np.zeros(
(1, self.D)).astype('float32')
out = fusion_seqexpand_concat_fc(xs, self.lod, w, b,
ACTIVATION[self.fc_act])
self.inputs = {'X': [(x0, self.lod)], 'FCWeight': w}
normal_lod = [i for i in range(bs + 1)]
for i in range(num_inputs - 1):
self.inputs['X'].append((xs[i + 1], normal_lod))
if self.with_bias:
self.inputs['FCBias'] = b
self.outputs = {'Out': (out, self.lod)}
self.attrs = {'fc_activation': self.fc_act, }
def test_check_output(self):
self.check_output()
class TestFusionSECFCOpNonBias(TestFusionSeqExpandConcatFCOp):
def set_conf(self):
self.with_bias = False
class TestFusionSECFCOpNonAct(TestFusionSeqExpandConcatFCOp):
def set_conf(self):
self.fc_act = 'identity'
class TestFusionSECFCOpMD1(TestFusionSeqExpandConcatFCOp):
def set_conf(self):
self.inputs_M = [3, 4, 2, 1, 5]
self.D = 8
class TestFusionSECFCOpMD2(TestFusionSeqExpandConcatFCOp):
def set_conf(self):
self.lod = [[5, 6]]
self.inputs_M = [1, 1]
class TestFusionSECFCOpBS1_1(TestFusionSeqExpandConcatFCOp):
def set_conf(self):
self.lod = [[1]]
self.inputs_M = [3, 4, 2]
class TestFusionSECFCOpBS1_2(TestFusionSeqExpandConcatFCOp):
def set_conf(self):
self.lod = [[1]]
self.inputs_M = [3, 4]
class TestFusionSECFCOpBS1_3(TestFusionSeqExpandConcatFCOp):
def set_conf(self):
self.lod = [[5]]
self.inputs_M = [6, 3]
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册