Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0ea41e62
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0ea41e62
编写于
1月 19, 2021
作者:
L
Leo Chen
提交者:
GitHub
1月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] support layer_norm fp16 in dygraph amp (#30430) #30566
[cherry-pick] support layer_norm fp16 in dygraph amp (#30430)
上级
96058384
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
84 addition
and
48 deletion
+84
-48
paddle/fluid/imperative/amp_auto_cast.cc
paddle/fluid/imperative/amp_auto_cast.cc
+43
-28
paddle/fluid/imperative/amp_auto_cast.h
paddle/fluid/imperative/amp_auto_cast.h
+4
-2
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+21
-18
python/paddle/fluid/tests/unittests/test_imperative_auto_mixed_precision.py
...d/tests/unittests/test_imperative_auto_mixed_precision.py
+16
-0
未找到文件。
paddle/fluid/imperative/amp_auto_cast.cc
浏览文件 @
0ea41e62
...
...
@@ -14,6 +14,7 @@
#include "paddle/fluid/imperative/amp_auto_cast.h"
#include <algorithm>
#include <memory>
#include <string>
#include <utility>
...
...
@@ -35,14 +36,29 @@ AmpOperators& AmpOperators::Instance() {
return
instance
;
}
std
::
shared_ptr
<
std
::
unordered_set
<
std
::
string
>>
AmpOperators
::
GetAllowOps
()
{
std
::
shared_ptr
<
std
::
unordered_set
<
std
::
string
>>
AmpOperators
::
GetMutableAllowOps
()
{
return
allow_ops_
;
}
std
::
shared_ptr
<
std
::
unordered_set
<
std
::
string
>>
AmpOperators
::
GetBlockOps
()
{
std
::
shared_ptr
<
std
::
unordered_set
<
std
::
string
>>
AmpOperators
::
GetMutableBlockOps
()
{
return
block_ops_
;
}
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
AmpOperators
&
ops
)
{
os
<<
"allow ops: "
;
auto
allow_ops
=
ops
.
GetMutableAllowOps
();
std
::
copy
((
*
allow_ops
).
begin
(),
(
*
allow_ops
).
end
(),
std
::
ostream_iterator
<
std
::
string
>
(
os
,
" "
));
os
<<
"; "
;
os
<<
"block ops: "
;
auto
block_ops
=
ops
.
GetMutableBlockOps
();
std
::
copy
((
*
block_ops
).
begin
(),
(
*
block_ops
).
end
(),
std
::
ostream_iterator
<
std
::
string
>
(
os
,
" "
));
return
os
;
}
inline
std
::
string
GetDtypeStr
(
const
std
::
shared_ptr
<
imperative
::
VarBase
>&
var
)
{
return
framework
::
DataTypeToString
(
var
->
DataType
());
...
...
@@ -115,51 +131,50 @@ static inline framework::proto::VarType::Type GetPromoteType(
NameVarBaseMap
AutoCastInputs
(
const
std
::
string
&
op_type
,
const
NameVarBaseMap
&
ins
)
{
NameVarBaseMap
new_ins
=
{};
if
(
AmpOperators
::
Instance
().
GetAllowOps
()
->
count
(
op_type
))
{
for
(
const
auto
&
pair
:
ins
)
{
NameVarBaseMap
new_ins
(
ins
);
if
(
AmpOperators
::
Instance
().
GetMutableAllowOps
()
->
count
(
op_type
))
{
for
(
auto
&
pair
:
new_ins
)
{
// NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
if
((
op_type
==
"batch_norm"
||
op_type
==
"layer_norm"
)
&&
pair
.
first
!=
"X"
)
{
continue
;
}
VLOG
(
5
)
<<
"Op("
<<
op_type
<<
"): Cast "
<<
pair
.
first
<<
" from "
<<
GetDtypeStr
(
*
pair
.
second
.
cbegin
())
<<
" to float16"
;
for
(
const
auto
&
var
:
pair
.
second
)
{
auto
new_var
=
CastToFP16
(
var
);
new_ins
[
pair
.
first
].
emplace_back
(
new_var
);
for
(
auto
&
var
:
pair
.
second
)
{
var
=
CastToFP16
(
var
);
}
}
return
new_ins
;
}
else
if
(
AmpOperators
::
Instance
().
GetBlockOps
()
->
count
(
op_type
))
{
for
(
const
auto
&
pair
:
ins
)
{
}
else
if
(
AmpOperators
::
Instance
().
Get
Mutable
BlockOps
()
->
count
(
op_type
))
{
for
(
auto
&
pair
:
new_
ins
)
{
VLOG
(
5
)
<<
"Op("
<<
op_type
<<
"): Cast "
<<
pair
.
first
<<
" from "
<<
GetDtypeStr
(
*
pair
.
second
.
cbegin
())
<<
" to float"
;
for
(
const
auto
&
var
:
pair
.
second
)
{
auto
new_var
=
CastToFP32
(
var
);
new_ins
[
pair
.
first
].
emplace_back
(
new_var
);
for
(
auto
&
var
:
pair
.
second
)
{
var
=
CastToFP32
(
var
);
}
}
return
new_ins
;
}
else
{
auto
dst_type
=
GetPromoteType
(
ins
);
for
(
const
auto
&
pair
:
ins
)
{
for
(
auto
&
pair
:
new_ins
)
{
// NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16.
if
((
op_type
==
"batch_norm"
||
op_type
==
"layer_norm"
)
&&
pair
.
first
==
"X"
&&
dst_type
==
framework
::
proto
::
VarType
::
FP32
)
{
continue
;
}
VLOG
(
5
)
<<
"Op("
<<
op_type
<<
"): Cast "
<<
pair
.
first
<<
" from "
<<
GetDtypeStr
(
*
pair
.
second
.
cbegin
())
<<
" to "
<<
framework
::
DataTypeToString
(
dst_type
);
for
(
const
auto
&
var
:
pair
.
second
)
{
// NOTE(zhiqiu): Conv + BN always occur together, we needn't
// cast X of batch_norm to FP32, which is produced by conv as FP16 type.
if
(
op_type
==
"batch_norm"
&&
pair
.
first
==
"X"
&&
dst_type
==
framework
::
proto
::
VarType
::
FP32
)
{
new_ins
[
pair
.
first
].
emplace_back
(
var
);
continue
;
}
auto
new_var
=
dst_type
==
framework
::
proto
::
VarType
::
FP32
?
CastToFP32
(
var
)
:
CastToFP16
(
var
);
new_ins
[
pair
.
first
].
emplace_back
(
new_var
);
for
(
auto
&
var
:
pair
.
second
)
{
var
=
(
dst_type
==
framework
::
proto
::
VarType
::
FP32
?
CastToFP32
(
var
)
:
CastToFP16
(
var
));
}
}
return
new_ins
;
}
return
ins
;
return
new_
ins
;
}
}
// namespace imperative
...
...
paddle/fluid/imperative/amp_auto_cast.h
浏览文件 @
0ea41e62
...
...
@@ -36,9 +36,9 @@ class AmpOperators {
static
AmpOperators
&
Instance
();
std
::
shared_ptr
<
std
::
unordered_set
<
std
::
string
>>
GetAllowOps
();
std
::
shared_ptr
<
std
::
unordered_set
<
std
::
string
>>
Get
Mutable
AllowOps
();
std
::
shared_ptr
<
std
::
unordered_set
<
std
::
string
>>
GetBlockOps
();
std
::
shared_ptr
<
std
::
unordered_set
<
std
::
string
>>
Get
Mutable
BlockOps
();
private:
AmpOperators
();
// forbid calling default constructor
...
...
@@ -52,6 +52,8 @@ class AmpOperators {
std
::
shared_ptr
<
std
::
unordered_set
<
std
::
string
>>
block_ops_
;
};
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
AmpOperators
&
ops
);
// NOTE(zhiqiu): AutoCastGuard is used for RAII.
class
AutoCastGuard
{
public:
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
0ea41e62
...
...
@@ -1257,27 +1257,30 @@ void BindImperative(py::module *m_ptr) {
py
::
return_value_policy
::
reference
)
.
def
(
"_generate_unique_name"
,
&
imperative
::
Tracer
::
GenerateUniqueName
,
py
::
arg
(
"key"
)
=
"dygraph_tmp"
)
.
def
(
"_set_amp_op_list"
,
[](
imperative
::
Tracer
&
self
,
std
::
unordered_set
<
std
::
string
>
&
allow_ops
,
std
::
unordered_set
<
std
::
string
>
&
block_ops
)
{
// NOTE(zhiqiu): The automatic conversion in pybind11 between
// c++
// STL and python set/list/dict involve a copy operation that
// prevents pass-by-reference semantics, so it is ok to swap.
// The reaseon why not directly pass
// std::shared_ptr<std::unordered_set<std::string>>
// is that pybind11 forbid shared_ptr<T> where T is not custom
// type.
imperative
::
AmpOperators
::
Instance
().
GetAllowOps
()
->
swap
(
allow_ops
);
imperative
::
AmpOperators
::
Instance
().
GetBlockOps
()
->
swap
(
block_ops
);
})
.
def
(
"_set_amp_op_list"
,
[](
imperative
::
Tracer
&
self
,
std
::
unordered_set
<
std
::
string
>
&
allow_ops
,
std
::
unordered_set
<
std
::
string
>
&
block_ops
)
{
// NOTE(zhiqiu): The automatic conversion in pybind11 between
// c++
// STL and python set/list/dict involve a copy operation that
// prevents pass-by-reference semantics, so it is ok to swap.
// The reaseon why not directly pass
// std::shared_ptr<std::unordered_set<std::string>>
// is that pybind11 forbid shared_ptr<T> where T is not custom
// type.
imperative
::
AmpOperators
::
Instance
().
GetMutableAllowOps
()
->
swap
(
allow_ops
);
imperative
::
AmpOperators
::
Instance
().
GetMutableBlockOps
()
->
swap
(
block_ops
);
VLOG
(
4
)
<<
"AMP operators changed, "
<<
imperative
::
AmpOperators
::
Instance
();
})
.
def
(
"_get_amp_op_list"
,
[](
imperative
::
Tracer
&
self
)
{
return
std
::
make_tuple
(
*
(
imperative
::
AmpOperators
::
Instance
().
GetAllowOps
()),
*
(
imperative
::
AmpOperators
::
Instance
().
GetBlockOps
()));
*
(
imperative
::
AmpOperators
::
Instance
().
Get
Mutable
AllowOps
()),
*
(
imperative
::
AmpOperators
::
Instance
().
Get
Mutable
BlockOps
()));
})
.
def
(
"trace"
,
[](
imperative
::
Tracer
&
self
,
const
std
::
string
&
type
,
...
...
python/paddle/fluid/tests/unittests/test_imperative_auto_mixed_precision.py
浏览文件 @
0ea41e62
...
...
@@ -389,5 +389,21 @@ class TestResnet(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
out_fp32
[
0
],
out_amp
[
0
],
atol
=
1.e-2
))
class
TestLayerNormFp16
(
unittest
.
TestCase
):
r
''' layer_norm and batch_norm support mixed inputs, i.e., only input x is fp16
and other params are fp32.
'''
def
test_layer_norm_fp16
(
self
):
if
fluid
.
is_compiled_with_cuda
():
with
fluid
.
dygraph
.
guard
(
fluid
.
CUDAPlace
(
0
)):
x
=
paddle
.
rand
([
2
,
2
,
2
,
3
])
layer_norm
=
paddle
.
nn
.
LayerNorm
(
x
.
shape
[
1
:])
with
paddle
.
amp
.
auto_cast
(
custom_white_list
=
[
'layer_norm'
]):
out
=
layer_norm
(
x
)
self
.
assertTrue
(
out
.
dtype
==
fluid
.
core
.
VarDesc
.
VarType
.
FP16
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录