Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0e73967a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0e73967a
编写于
11月 09, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update the annotations of layers.py
上级
7d343fca
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
117 addition
and
104 deletion
+117
-104
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+117
-104
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
0e73967a
...
...
@@ -5135,12 +5135,19 @@ def block_expand_layer(input,
@
layer_support
()
def
maxout_layer
(
input
,
groups
,
num_channels
=
None
,
name
=
None
,
layer_attr
=
None
):
"""
A layer to do max out on conv layer output.
- Input: output of a conv layer.
- Output: feature map size same as input. Channel is (input channel) / groups.
A layer to do max out on convolutional layer output.
- Input: the output of a convolutional layer.
- Output: feature map size same as the input's, and its channel number is
(input channel) / groups.
So groups should be larger than 1, and the num of channels should be able
to devided by groups.
to be devided by groups.
Reference:
Maxout Networks
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
https://arxiv.org/pdf/1312.6082v4.pdf
.. math::
y_{si+j} = \max_k x_{gsi + sk + j}
...
...
@@ -5150,12 +5157,6 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
0 \le j < s
0 \le k < groups
Please refer to Paper:
- Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
- Multi-digit Number Recognition from Street View
\
Imagery using Deep Convolutional Neural Networks:
\
https://arxiv.org/pdf/1312.6082v4.pdf
The simple usage is:
.. code-block:: python
...
...
@@ -5166,14 +5167,16 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
:param input: The input of this layer.
:type input: LayerOutput
:param num_channels: The channel number of input layer. If None will be set
automatically from previous output.
:type num_channels: int | None
:param num_channels: The number of input channels. If the parameter is not set or
set to None, its actual value will be automatically set to
the channels number of the input.
:type num_channels: int
:param groups: The group number of input layer.
:type groups: int
:param name: The name of this layer. It is optional.
:type name: None | basestring.
:param layer_attr: Extra Layer attribute.
:type name: basestring
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -5205,20 +5208,20 @@ def ctc_layer(input,
layer_attr
=
None
):
"""
Connectionist Temporal Classification (CTC) is designed for temporal
classication task.
That is, for
sequence labeling problems where the
classication task.
e.g.
sequence labeling problems where the
alignment between the inputs and the target labels is unknown.
More details can be found by referring to `Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
icml2006_GravesFGS06.pdf>`_
Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
Note:
Considering the 'blank' label needed by CTC, you need to use
(num_classes + 1) as the input size.
num_classes is the category number.
And the 'blank' is the last category index. So the size of 'input' layer
, such as
fc_layer with softmax activation
, should be num_classes + 1. The size of ctc_layer
should also be num_classes + 1
.
Considering the 'blank' label needed by CTC, you need to use
(num_classes + 1)
as the size of the input, where
num_classes is the category number.
And the 'blank' is the last category index. So the size of 'input' layer
(e.g.
fc_layer with softmax activation
) should be (num_classes + 1). The size of
ctc_layer should also be (num_classes + 1)
.
The example usage is:
...
...
@@ -5231,16 +5234,17 @@ def ctc_layer(input,
:param input: The input of this layer.
:type input: LayerOutput
:param label: The
data layer of label with variable length
.
:param label: The
input label
.
:type label: LayerOutput
:param size:
category numbers + 1
.
:param size:
The dimension of this layer, which must be equal to (category number + 1)
.
:type size: int
:param name: The name of this layer. It is optional.
:type name: basestring
| None
:param norm_by_times: Whether to
normalization by times. False by
default.
:type name: basestring
:param norm_by_times: Whether to
do normalization by times. False is the
default.
:type norm_by_times: bool
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute | None
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -5281,20 +5285,19 @@ def warp_ctc_layer(input,
building process, PaddlePaddle will clone the source codes, build and
install it to :code:`third_party/install/warpctc` directory.
More details of CTC can be found by referring to `Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
icml2006_GravesFGS06.pdf>`_.
Reference:
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
Note:
- Let num_classes represent the category number. Considering the 'blank'
label needed by CTC, you need to use (num_classes + 1) as the input size.
Thus, the size of both warp_ctc layer and 'input' layer should be set to
num_classes + 1.
- Let num_classes represents the category number. Considering the 'blank'
label needed by CTC, you need to use (num_classes + 1) as the size of
warp_ctc layer.
- You can set 'blank' to any value ranged in [0, num_classes], which
should be consistent
as that
used in your labels.
should be consistent
with those
used in your labels.
- As a native 'softmax' activation is interated to the warp-ctc library,
'linear' activation is expected instead in the 'input' layer.
'linear' activation is expected
to be used
instead in the 'input' layer.
The example usage is:
...
...
@@ -5308,18 +5311,19 @@ def warp_ctc_layer(input,
:param input: The input of this layer.
:type input: LayerOutput
:param label: The
data layer of label with variable length
.
:param label: The
input label
.
:type label: LayerOutput
:param size:
category numbers + 1
.
:param size:
The dimension of this layer, which must be equal to (category number + 1)
.
:type size: int
:param name: The name of this layer. It is optional.
:type name: basestring
| None
:param blank:
the 'blank' label used in ctc
:type name: basestring
:param blank:
The 'blank' label used in ctc.
:type blank: int
:param norm_by_times: Whether to
normalization by times. False by
default.
:param norm_by_times: Whether to
do normalization by times. False is the
default.
:type norm_by_times: bool
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute | None
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -5365,23 +5369,25 @@ def crf_layer(input,
label=label,
size=label_dim)
:param input: The first input layer
is the feature
.
:param input: The first input layer.
:type input: LayerOutput
:param label: The
second input layer is
label.
:param label: The
input
label.
:type label: LayerOutput
:param size: The category number.
:type size: int
:param weight: The third layer is "weight" of each sample, which is an
optional argument.
:param weight: The scale of the cost of each sample. It is optional.
:type weight: LayerOutput
:param param_attr: Parameter attribute. None means default attribute
:param param_attr: The parameter attribute. See ParameterAttribute for
details.
:type param_attr: ParameterAttribute
:param name: The name of this layer. It is optional.
:type name: None | basestring
:param coeff: The coefficient affects the gradient in the backward.
:type name: basestring
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
:type coeff: float
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute | None
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -5427,9 +5433,9 @@ def crf_decoding_layer(input,
"""
A layer for calculating the decoding sequence of sequential conditional
random field model. The decoding sequence is stored in output.ids.
If
a second input
is provided, it is treated as the ground-truth label, and
this layer will also calculate error. output.value[i] is 1 for incorrect
decoding
or 0 for correct decoding
.
If
the input 'label'
is provided, it is treated as the ground-truth label, and
this layer will also calculate error. output.value[i] is 1 for
an
incorrect
decoding
and 0 for the correct
.
The example usage is:
...
...
@@ -5440,16 +5446,18 @@ def crf_decoding_layer(input,
:param input: The first input layer.
:type input: LayerOutput
:param size:
size
of this layer.
:param size:
The dimension
of this layer.
:type size: int
:param label: None or ground-truth label.
:type label: LayerOutput or None
:param param_attr: Parameter attribute. None means default attribute
:param label: The input label.
:type label: LayerOutput | None
:param param_attr: The parameter attribute. See ParameterAttribute for
details.
:type param_attr: ParameterAttribute
:param name: The name of this layer. It is optional.
:type name: None | basestring
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute | None
:type name: basestring
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -5494,8 +5502,10 @@ def nce_layer(input,
layer_attr
=
None
):
"""
Noise-contrastive estimation.
Implements the method in the following paper:
A fast and simple algorithm for training neural probabilistic language models.
Reference:
A fast and simple algorithm for training neural probabilistic language models.
http://www.icml.cc/2012/papers/855.pdf
The example usage is:
...
...
@@ -5507,31 +5517,33 @@ def nce_layer(input,
:param name: The name of this layer. It is optional.
:type name: basestring
:param input: The
input layers. It could be a LayerOutput of list/tuple of LayerOutput
.
:param input: The
first input of this layer
.
:type input: LayerOutput | list | tuple | collections.Sequence
:param label:
label layer
:param label:
The input label.
:type label: LayerOutput
:param weight:
weight layer, can be None(default)
:param weight:
The scale of the cost. It is optional.
:type weight: LayerOutput
:param num_classes: number of classes.
:param num_classes:
The
number of classes.
:type num_classes: int
:param act: Activation type. SigmoidActivation is the default.
:type act: BaseActivation
:param param_attr: The Parameter Attribute|list.
:param param_attr: The parameter attribute. See ParameterAttribute for
details.
:type param_attr: ParameterAttribute
:param num_neg_samples:
number of negative samples. Default is 10
.
:param num_neg_samples:
The number of negative samples. 10 is the default
.
:type num_neg_samples: int
:param neg_distribution: The
distribution for generating the random negative labels.
A uniform distribution will be used if not provided.
If not None, its length must be equal to num_classes.
:param neg_distribution: The
probability distribution for generating the random negative
labels. If this parameter is not set, a uniform distribution will
be used.
If not None, its length must be equal to num_classes.
:type neg_distribution: list | tuple | collections.Sequence | None
:param bias_attr: The bias attribute. If the parameter is set to False or an object
whose type is not ParameterAttribute, no bias is defined. If the
parameter is set to True, the bias is initialized to zero.
:type bias_attr: ParameterAttribute | None | bool | Any
:param layer_attr: Extra Layer Attribute.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return:
layer name
.
:return:
LayerOutput object
.
:rtype: LayerOutput
"""
if
isinstance
(
input
,
LayerOutput
):
...
...
@@ -5605,11 +5617,11 @@ def rank_cost(left,
coeff
=
1.0
,
layer_attr
=
None
):
"""
A cost Layer for learning to rank using gradient descent.
Details can refer
to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
ICML_ranking.pdf>`_.
This layer contains at least three inputs. The weight is an optional
argument, which affects the cost.
A cost Layer for learning to rank using gradient descent.
Reference:
Learning to Rank using Gradient Descent
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
.. math::
...
...
@@ -5640,14 +5652,15 @@ def rank_cost(left,
:type right: LayerOutput
:param label: Label is 1 or 0, means positive order and reverse order.
:type label: LayerOutput
:param weight: The weight affects the cost, namely the scale of cost.
It is an optional argument.
:param weight: The scale of cost. It is optional.
:type weight: LayerOutput
:param name: The name of this layer. It is optional.
:type name: None | basestring
:param coeff: The coefficient affects the gradient in the backward.
:type name: basestring
:param coeff: The weight of the gradient in the back propagation.
1.0 is the default.
:type coeff: float
:param layer_attr: Extra Layer Attribute.
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -5692,25 +5705,25 @@ def lambda_cost(input,
NDCG_num=8,
max_sort_size=-1)
:param input: Samples of the same query should be loaded as sequence.
:param input: The first input of this layer, which is often a document
samples list of the same query and whose type must be sequence.
:type input: LayerOutput
:param score: The
2nd input. Score of each sample
.
:param score: The
scores of the samples
.
:type input: LayerOutput
:param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
e.g., 5 for NDCG@5. It must be less than or equal to the
minimum size of
lists
.
minimum size of
the list
.
:type NDCG_num: int
:param max_sort_size: The size of partial sorting in calculating gradient.
If max_sort_size = -1, then for each list, the
algorithm will sort the entire list to get gradient.
In other cases, max_sort_size must be greater than or
equal to NDCG_num. And if max_sort_size is greater
than the size of a list, the algorithm will sort the
entire list of get gradient.
:param max_sort_size: The size of partial sorting in calculating gradient. If
max_sort_size is equal to -1 or greater than the number
of the samples in the list, then the algorithm will sort
the entire list to compute the gradient. In other cases,
max_sort_size must be greater than or equal to NDCG_num.
:type max_sort_size: int
:param name: The name of this layer. It is optional.
:type name: None | basestring
:param layer_attr: Extra Layer Attribute.
:type name: basestring
:param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
details.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -6830,8 +6843,8 @@ def img_conv3d_layer(input,
parameter is set to True, the bias is initialized to zero.
:type bias_attr: ParameterAttribute | None | bool | Any
:param num_channels: The number of input channels. If the parameter is not set or
set to None,
its actual value will be automatically set to
the channels number of the input
.
set to None, its actual value will be automatically set to
the channels number of the input.
:type num_channels: int
:param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
details.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录