提交 0da81332 编写于 作者: S superjom

Merge branch 'develop' of github.com:PaddlePaddle/Paddle into feature/recurrent_op_backward_fix

...@@ -54,9 +54,9 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -54,9 +54,9 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of mul op"); AddInput("X", "(Tensor), 2D tensor of size (M x K)");
AddInput("Y", "The second input of mul op"); AddInput("Y", "(Tensor), 2D tensor of size (K x N)");
AddOutput("Out", "The output of mul op"); AddOutput("Out", "(Tensor), 2D tensor of size (M x N)");
AddComment(R"DOC( AddComment(R"DOC(
Two Element Mul Operator. Two Element Mul Operator.
The equation is: Out = X * Y The equation is: Out = X * Y
...@@ -72,7 +72,7 @@ The equation is: Out = X * Y ...@@ -72,7 +72,7 @@ The equation is: Out = X * Y
构造函数里通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddComment`添加Op的注释。这些函数会将对应内容添加到`OpProto`中。 构造函数里通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddComment`添加Op的注释。这些函数会将对应内容添加到`OpProto`中。
上面的代码在`MulOp`中添加两个输入`X``Y`,添加了一个输出`Out`,并解释了各自含义,命名请遵守命名规范 上面的代码在`MulOp`中添加两个输入`X``Y`,添加了一个输出`Out`,并解释了各自含义,命名请遵守[命名规范](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md)
再以[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)为例: 再以[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)为例:
......
...@@ -130,15 +130,19 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { ...@@ -130,15 +130,19 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
PADDLE_ENFORCE_LE(end_idx, dims_[0], "Slice end index is out of bound."); PADDLE_ENFORCE_LE(end_idx, dims_[0], "Slice end index is out of bound.");
PADDLE_ENFORCE_LT(begin_idx, end_idx, PADDLE_ENFORCE_LT(begin_idx, end_idx,
"Begin index must be less than end index."); "Begin index must be less than end index.");
PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1.");
size_t base = numel() / dims_[0]; if (dims_[0] == 1) {
Tensor dst; return *this;
dst.holder_ = holder_; } else {
DDim dst_dims = dims_; size_t base = numel() / dims_[0];
dst_dims[0] = end_idx - begin_idx; Tensor dst;
dst.Resize(dst_dims); dst.holder_ = holder_;
dst.offset_ = offset_ + begin_idx * base * sizeof(T); DDim dst_dims = dims_;
return dst; dst_dims[0] = end_idx - begin_idx;
dst.Resize(dst_dims);
dst.offset_ = offset_ + begin_idx * base * sizeof(T);
return dst;
}
} }
inline Tensor& Tensor::Resize(const DDim& dims) { inline Tensor& Tensor::Resize(const DDim& dims) {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gemm_conv2d_op.h"
namespace paddle {
namespace operators {
int outputSize(int input_size, int filter_size, int padding, int stride) {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
}
class Conv2DOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Input"),
"Input(Input) of Conv2DOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Filter"),
"Input(Filter) of Conv2DOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Output"),
"Output(Output) of Conv2DOp should not be null.");
auto in = ctx.Input<Tensor>("Input");
auto filter = ctx.Input<Tensor>("Filter");
auto out = ctx.Output<framework::LoDTensor>("Output");
std::vector<int> strides = Attr<std::vector<int>>("strides");
std::vector<int> paddings = Attr<std::vector<int>>("paddings");
int groups = Attr<int>("groups");
int input_channels = in->dims()[1];
int output_channels = filter->dims()[0];
PADDLE_ENFORCE_EQ(in->dims().size(), 4, "Conv2DOp input should be 4-D.");
PADDLE_ENFORCE_EQ(filter->dims().size(), 4,
"Conv2DOp filter should be 4-D.");
PADDLE_ENFORCE_EQ(input_channels, filter->dims()[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
PADDLE_ENFORCE_EQ(
output_channels % groups, 0,
"The number of output channels should be divided by groups.");
auto output_height =
outputSize(in->dims()[2], filter->dims()[2], paddings[0], strides[0]);
auto output_width =
outputSize(in->dims()[3], filter->dims()[3], paddings[1], strides[1]);
out->Resize(
{in->dims()[0], filter->dims()[0], output_height, output_width});
}
};
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"The input tensor of convolution operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image.");
AddInput(
"Filter",
"The filter tensor of convolution operator."
"The format of the filter tensor is MCHW, where M is the number of "
"output image channels, C is the number of input image channels, "
"H and W is height and width of filter. "
"If the groups attribute is greater than 1, C equal the number of "
"input image channels divided by the groups.");
AddOutput("Output",
"The output tensor of convolution operator."
"The format of output tensor is also NCHW.");
AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
.SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings", "paddings of convolution operator.")
.SetDefault({0, 0});
AddAttr<int>(
"groups",
"group size of convolution operator. "
"Refer to grouped convolution in Alex Krizhevsky's paper: "
"when group=2, the first half of the filters are only connected to the "
"first half of the input channels, and the second half only connected "
"to the second half.")
.SetDefault(1);
AddComment(R"DOC(
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC");
}
};
class Conv2DOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto in = ctx.Input<Tensor>("Input");
auto filter = ctx.Input<Tensor>("Filter");
auto d_in =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Input"));
auto d_filter =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Filter"));
if (d_in) d_in->Resize(in->dims());
if (d_filter) d_filter->Resize(filter->dims());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv2d, ops::Conv2DOp, ops::Conv2DOpMaker, conv2d_grad,
ops::Conv2DOpGrad);
REGISTER_OP_CPU_KERNEL(
conv2d, ops::GemmConv2DKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gemm_conv2d_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
conv2d, ops::GemmConv2DKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename Place, typename T>
class GemmConv2DKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
// The filter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* output = context.Output<Tensor>("Output");
output->mutable_data<T>(context.GetPlace());
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
int groups = context.Attr<int>("groups");
int batch_size = input->dims()[0];
int input_channels = input->dims()[1];
int filter_height = filter.dims()[filter.dims().size() - 2];
int filter_width = filter.dims()[filter.dims().size() - 1];
int output_channels = output->dims()[1];
int output_height = output->dims()[2];
int output_width = output->dims()[3];
paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
// use col_shape in the im2col calculation
framework::DDim col_shape = {input_channels / groups, filter_height,
filter_width, output_height, output_width};
// use col_matrix_shape in the gemm calculation
framework::DDim col_matrix_shape = {
input_channels / groups * filter_height * filter_width,
output_height * output_width};
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix = col;
col_matrix.Resize(col_matrix_shape);
framework::DDim input_shape = {input->dims()[1], input->dims()[2],
input->dims()[3]};
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
framework::DDim output_matrix_shape = {output_channels,
output_height * output_width};
auto* device_context =
const_cast<platform::DeviceContext*>(context.device_context_);
// convolution operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
for (int g = 0; g < groups; g++) {
// im2col
Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
device_context);
// gemm
Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(filter_slice, false, col_matrix, false, T(1.0),
&out_slice, T(0.0), device_context);
}
}
}
};
template <typename Place, typename T>
class GemmConvGrad2DKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
const Tensor* output_grad =
context.Input<Tensor>(framework::GradVarName("Output"));
Tensor* input_grad =
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad =
context.Output<Tensor>(framework::GradVarName("Filter"));
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor filter = *context.Input<Tensor>("Filter");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
int groups = context.Attr<int>("groups");
int batch_size = input->dims()[0];
int input_channels = input->dims()[1];
int filter_height = filter.dims()[filter.dims().size() - 2];
int filter_width = filter.dims()[filter.dims().size() - 1];
int output_channels = output_grad->dims()[1];
int output_height = output_grad->dims()[2];
int output_width = output_grad->dims()[3];
paddle::operators::math::Col2ImFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
col2im;
paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
// use col_shape in the im2col and col2im calculation
framework::DDim col_shape = {input_channels / groups, filter_height,
filter_width, output_height, output_width};
// use col_matrix_shape in the gemm calculation
framework::DDim col_matrix_shape = {
input_channels / groups * filter_height * filter_width,
output_height * output_width};
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix = col;
col_matrix.Resize(col_matrix_shape);
framework::DDim input_shape = {input->dims()[1], input->dims()[2],
input->dims()[3]};
framework::DDim output_matrix_shape = {
output_grad->dims()[1],
output_grad->dims()[2] * output_grad->dims()[3]};
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
auto* device_context =
const_cast<platform::DeviceContext*>(context.device_context_);
// convolution backward input operator: gemm + col2im
// convolution backward weight operator: im2col + gemm
int in_step = input_channels / groups;
int out_step = output_channels / groups;
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*input_grad);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
for (int i = 0; i < batch_size; i++) {
Tensor out_grad_batch =
output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
Tensor in_grad_batch =
input_grad->Slice<T>(i, i + 1).Resize(input_shape);
for (int g = 0; g < groups; g++) {
// gemm
Tensor out_grad_slice =
out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor filter_slice =
filter.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(filter_slice, true, out_grad_slice, false,
T(1.0), &col_matrix, T(0.0), device_context);
// col2im
Tensor in_grad_slice =
in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
paddings[1], device_context);
}
}
}
if (filter_grad) {
filter_grad->mutable_data<T>(context.GetPlace());
Tensor filter_grad_ = *filter_grad;
filter_grad_.Resize(filter_matrix_shape);
auto t = framework::EigenVector<T>::Flatten(filter_grad_);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
for (int i = 0; i < batch_size; i++) {
Tensor out_grad_batch =
output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
for (int g = 0; g < groups; g++) {
// im2col
Tensor out_grad_slice =
out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
im2col(in_slice, col, strides[0], strides[1], paddings[0],
paddings[1], device_context);
// gemm
Tensor filter_grad_slice =
filter_grad_.Slice<T>(g * out_step, (g + 1) * out_step);
math::matmul<Place, T>(out_grad_slice, false, col_matrix, true,
T(1.0), &filter_grad_slice, T(1.0),
device_context);
}
}
}
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
class TestConv2dOp(OpTest):
def setUp(self):
self.init_groups()
self.op_type = "conv2d"
batch_size = 2
input_channels = 3
input_height = 5
input_width = 5
output_channels = 6
filter_height = 3
filter_width = 3
stride = 1
padding = 0
output_height = (input_height - filter_height + 2 * padding
) / stride + 1
output_width = (input_width - filter_width + 2 * padding) / stride + 1
input = np.random.random((batch_size, input_channels, input_height,
input_width)).astype("float32")
filter = np.random.random(
(output_channels, input_channels / self.groups, filter_height,
filter_width)).astype("float32")
output = np.ndarray(
(batch_size, output_channels, output_height, output_width))
self.inputs = {'Input': input, 'Filter': filter}
self.attrs = {
'strides': [1, 1],
'paddings': [0, 0],
'groups': self.groups
}
output_group_channels = output_channels / self.groups
input_group_channels = input_channels / self.groups
for batchid in xrange(batch_size):
for group in xrange(self.groups):
for outchannelid in range(group * output_group_channels,
(group + 1) * output_group_channels):
for rowid in xrange(output_height):
for colid in xrange(output_width):
start_h = (rowid * stride) - padding
start_w = (colid * stride) - padding
output_value = 0.0
for inchannelid in range(
group * input_group_channels,
(group + 1) * input_group_channels):
for frowid in xrange(filter_height):
for fcolid in xrange(filter_width):
input_value = 0.0
inrowid = start_h + frowid
incolid = start_w + fcolid
if ((inrowid >= 0 and
inrowid < input_height) and
(incolid >= 0 and
incolid < input_width)):
input_value = input[batchid][
inchannelid][inrowid][incolid]
filter_value = filter[outchannelid][
inchannelid % input_group_channels][
frowid][fcolid]
output_value += input_value * filter_value
output[batchid][outchannelid][rowid][
colid] = output_value
self.outputs = {'Output': output}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(set(['Input', 'Filter']), 'Output')
def test_check_grad_no_filter(self):
self.check_grad(['Input'], 'Output', no_grad_set=set(['Filter']))
def test_check_grad_no_input(self):
self.check_grad(['Filter'], 'Output', no_grad_set=set(['Input']))
def init_groups(self):
self.groups = 1
class TestWithGroup(TestConv2dOp):
def init_groups(self):
self.groups = 3
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册