Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0d28edfa
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0d28edfa
编写于
4月 01, 2022
作者:
X
xiongkun
提交者:
GitHub
4月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add yaml for ele_max ele_min. (#41161)
* add yaml for ele_max ele_min * fig * push * xxx
上级
01724b1a
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
121 addition
and
19 deletion
+121
-19
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+1
-1
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+24
-9
python/paddle/fluid/tests/unittests/test_elementwise_max_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_max_op.py
+26
-4
python/paddle/fluid/tests/unittests/test_elementwise_min_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_min_op.py
+16
-2
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+16
-3
python/paddle/utils/code_gen/api.yaml
python/paddle/utils/code_gen/api.yaml
+18
-0
python/paddle/utils/code_gen/backward.yaml
python/paddle/utils/code_gen/backward.yaml
+20
-0
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
0d28edfa
...
@@ -40,6 +40,7 @@ from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, c
...
@@ -40,6 +40,7 @@ from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, c
import paddle
import paddle
from paddle.utils import deprecated
from paddle.utils import deprecated
from paddle import _C_ops
from paddle import _C_ops
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
__all__ = [
__all__ = [
'fc',
'fc',
...
@@ -204,7 +205,6 @@ def _elementwise_op_in_dygraph(x,
...
@@ -204,7 +205,6 @@ def _elementwise_op_in_dygraph(x,
op_name=None):
op_name=None):
op = getattr(_C_ops, op_name)
op = getattr(_C_ops, op_name)
out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
return dygraph_utils._append_activation_in_dygraph(
return dygraph_utils._append_activation_in_dygraph(
out, act, use_mkldnn=use_mkldnn)
out, act, use_mkldnn=use_mkldnn)
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
0d28edfa
...
@@ -781,10 +781,12 @@ class OpTest(unittest.TestCase):
...
@@ -781,10 +781,12 @@ class OpTest(unittest.TestCase):
if
arg_name
in
api_ignore_param_list
:
if
arg_name
in
api_ignore_param_list
:
results
.
append
(
get_default
(
idx
,
api_defaults
))
results
.
append
(
get_default
(
idx
,
api_defaults
))
else
:
else
:
assert
idx_of_op_proto_arguments
<
len
(
if
(
idx_of_op_proto_arguments
<
len
(
input_arguments
)):
input_arguments
),
"Assert False."
tmp
=
input_arguments
[
idx_of_op_proto_arguments
]
tmp
=
input_arguments
[
idx_of_op_proto_arguments
]
idx_of_op_proto_arguments
+=
1
idx_of_op_proto_arguments
+=
1
else
:
tmp
=
Empty
()
# use the default value
if
isinstance
(
tmp
,
Empty
):
if
isinstance
(
tmp
,
Empty
):
results
.
append
(
get_default
(
idx
,
api_defaults
))
results
.
append
(
get_default
(
idx
,
api_defaults
))
else
:
else
:
...
@@ -1356,6 +1358,9 @@ class OpTest(unittest.TestCase):
...
@@ -1356,6 +1358,9 @@ class OpTest(unittest.TestCase):
self
.
op_test
=
op_test
# stop the op_test object.
self
.
op_test
=
op_test
# stop the op_test object.
self
.
op_type
=
op_test
.
op_type
self
.
op_type
=
op_test
.
op_type
def
init
(
self
):
pass
def
convert_uint16_to_float
(
self
,
actual_np
,
expect_np
):
def
convert_uint16_to_float
(
self
,
actual_np
,
expect_np
):
raise
NotImplementedError
(
"base class, not implement!"
)
raise
NotImplementedError
(
"base class, not implement!"
)
...
@@ -1387,7 +1392,7 @@ class OpTest(unittest.TestCase):
...
@@ -1387,7 +1392,7 @@ class OpTest(unittest.TestCase):
rtol
=
self
.
rtol
if
hasattr
(
self
,
'rtol'
)
else
1e-5
,
rtol
=
self
.
rtol
if
hasattr
(
self
,
'rtol'
)
else
1e-5
,
equal_nan
=
equal_nan
),
equal_nan
=
equal_nan
),
"Output ("
+
name
+
") has diff at "
+
str
(
place
)
+
" in "
+
"Output ("
+
name
+
") has diff at "
+
str
(
place
)
+
" in "
+
self
.
checker_name
+
" checker"
)
self
.
checker_name
)
def
_compare_list
(
self
,
name
,
actual
,
expect
):
def
_compare_list
(
self
,
name
,
actual
,
expect
):
""" if expect is a tuple, we need to compare list.
""" if expect is a tuple, we need to compare list.
...
@@ -1403,7 +1408,7 @@ class OpTest(unittest.TestCase):
...
@@ -1403,7 +1408,7 @@ class OpTest(unittest.TestCase):
# NOTE(zhiqiu): np.allclose([], [1.]) returns True
# NOTE(zhiqiu): np.allclose([], [1.]) returns True
# see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
# see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
if
expect_np
.
size
==
0
:
if
expect_np
.
size
==
0
:
self
.
op_test
.
assertTrue
(
actual_np
.
size
==
0
)
self
.
op_test
.
assertTrue
(
actual_np
.
size
==
0
)
# }}}
self
.
_compare_numpy
(
name
,
actual_np
,
expect_np
)
self
.
_compare_numpy
(
name
,
actual_np
,
expect_np
)
if
isinstance
(
expect
,
tuple
):
if
isinstance
(
expect
,
tuple
):
self
.
_compare_list
(
name
,
actual
,
expect
)
self
.
_compare_list
(
name
,
actual
,
expect
)
...
@@ -1431,10 +1436,14 @@ class OpTest(unittest.TestCase):
...
@@ -1431,10 +1436,14 @@ class OpTest(unittest.TestCase):
the main enter point of Checker class
the main enter point of Checker class
"""
"""
self
.
init
()
self
.
calculate_output
()
self
.
calculate_output
()
self
.
compare_outputs_with_expects
()
self
.
compare_outputs_with_expects
()
class
StaticChecker
(
Checker
):
class
StaticChecker
(
Checker
):
def
init
(
self
):
self
.
checker_name
=
"static checker"
def
calculate_output
(
self
):
def
calculate_output
(
self
):
outs
,
fetch_list
=
self
.
op_test
.
_calc_output
(
outs
,
fetch_list
=
self
.
op_test
.
_calc_output
(
place
,
no_check_set
=
no_check_set
)
place
,
no_check_set
=
no_check_set
)
...
@@ -1474,6 +1483,9 @@ class OpTest(unittest.TestCase):
...
@@ -1474,6 +1483,9 @@ class OpTest(unittest.TestCase):
"Output ("
+
name
+
") has different lod at "
+
str
(
place
))
"Output ("
+
name
+
") has different lod at "
+
str
(
place
))
class
DygraphChecker
(
Checker
):
class
DygraphChecker
(
Checker
):
def
init
(
self
):
self
.
checker_name
=
"dygraph checker"
def
calculate_output
(
self
):
def
calculate_output
(
self
):
self
.
outputs
=
self
.
op_test
.
_calc_dygraph_output
(
self
.
outputs
=
self
.
op_test
.
_calc_dygraph_output
(
place
,
no_check_set
=
no_check_set
)
place
,
no_check_set
=
no_check_set
)
...
@@ -1519,18 +1531,21 @@ class OpTest(unittest.TestCase):
...
@@ -1519,18 +1531,21 @@ class OpTest(unittest.TestCase):
rtol
=
self
.
rtol
if
hasattr
(
self
,
'rtol'
)
else
1e-5
,
rtol
=
self
.
rtol
if
hasattr
(
self
,
'rtol'
)
else
1e-5
,
equal_nan
=
equal_nan
),
equal_nan
=
equal_nan
),
"Output ("
+
name
+
") has diff at "
+
str
(
place
)
+
"Output ("
+
name
+
") has diff at "
+
str
(
place
)
+
" in "
+
self
.
checker_name
+
" checker"
)
" in "
+
self
.
checker_name
)
class
EagerChecker
(
DygraphChecker
):
class
EagerChecker
(
DygraphChecker
):
def
init
(
self
):
self
.
checker_name
=
"eager checker"
def
calculate_output
(
self
):
def
calculate_output
(
self
):
# we only check end2end api when check_eager=True
# we only check end2end api when check_eager=True
self
.
is_python_api_test
=
True
with
_test_eager_guard
():
with
_test_eager_guard
():
self
.
is_python_api_test
=
True
eager_dygraph_outs
=
self
.
op_test
.
_calc_python_api_output
(
eager_dygraph_outs
=
self
.
op_test
.
_calc_python_api_output
(
place
)
place
)
if
eager_dygraph_outs
is
None
:
if
eager_dygraph_outs
is
None
:
# missing KernelSignature, fall back to eager middle output.
self
.
is_python_api_test
=
False
self
.
is_python_api_test
=
False
# missing KernelSignature, fall back to eager middle output.
eager_dygraph_outs
=
self
.
op_test
.
_calc_dygraph_output
(
eager_dygraph_outs
=
self
.
op_test
.
_calc_dygraph_output
(
place
,
no_check_set
=
no_check_set
)
place
,
no_check_set
=
no_check_set
)
self
.
outputs
=
eager_dygraph_outs
self
.
outputs
=
eager_dygraph_outs
...
...
python/paddle/fluid/tests/unittests/test_elementwise_max_op.py
浏览文件 @
0d28edfa
...
@@ -20,11 +20,13 @@ from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
...
@@ -20,11 +20,13 @@ from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
import
os
import
os
import
re
import
re
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
paddle
class
TestElementwiseOp
(
OpTest
):
class
TestElementwiseOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
self
.
op_type
=
"elementwise_max"
self
.
python_api
=
paddle
.
maximum
# If x and y have the same value, the max() is not differentiable.
# If x and y have the same value, the max() is not differentiable.
# So we generate test data by the following method
# So we generate test data by the following method
# to avoid them being too close to each other.
# to avoid them being too close to each other.
...
@@ -35,10 +37,16 @@ class TestElementwiseOp(OpTest):
...
@@ -35,10 +37,16 @@ class TestElementwiseOp(OpTest):
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
if
hasattr
(
self
,
'attrs'
):
self
.
check_output
(
check_eager
=
False
)
else
:
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad_normal
(
self
):
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
if
hasattr
(
self
,
'attrs'
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
check_eager
=
False
)
else
:
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
check_eager
=
True
)
def
test_check_grad_ingore_x
(
self
):
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
self
.
check_grad
(
...
@@ -55,6 +63,7 @@ class TestElementwiseOp(OpTest):
...
@@ -55,6 +63,7 @@ class TestElementwiseOp(OpTest):
class
TestElementwiseBF16Op
(
OpTest
):
class
TestElementwiseBF16Op
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
self
.
op_type
=
"elementwise_max"
self
.
python_api
=
paddle
.
maximum
self
.
dtype
=
np
.
uint16
self
.
dtype
=
np
.
uint16
# If x and y have the same value, the max() is not differentiable.
# If x and y have the same value, the max() is not differentiable.
# So we generate test data by the following method
# So we generate test data by the following method
...
@@ -69,10 +78,16 @@ class TestElementwiseBF16Op(OpTest):
...
@@ -69,10 +78,16 @@ class TestElementwiseBF16Op(OpTest):
self
.
outputs
=
{
'Out'
:
convert_float_to_uint16
(
np
.
maximum
(
x
,
y
))}
self
.
outputs
=
{
'Out'
:
convert_float_to_uint16
(
np
.
maximum
(
x
,
y
))}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
if
hasattr
(
self
,
'attrs'
):
self
.
check_output
(
check_eager
=
False
)
else
:
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad_normal
(
self
):
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
if
hasattr
(
self
,
'attrs'
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
check_eager
=
False
)
else
:
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
check_eager
=
True
)
def
test_check_grad_ingore_x
(
self
):
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
([
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
))
self
.
check_grad
([
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
))
...
@@ -86,6 +101,7 @@ class TestElementwiseBF16Op(OpTest):
...
@@ -86,6 +101,7 @@ class TestElementwiseBF16Op(OpTest):
class
TestElementwiseMaxOp_scalar
(
TestElementwiseOp
):
class
TestElementwiseMaxOp_scalar
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
self
.
op_type
=
"elementwise_max"
self
.
python_api
=
paddle
.
maximum
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
2
,
3
,
20
]).
astype
(
"float64"
)
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
2
,
3
,
20
]).
astype
(
"float64"
)
y
=
np
.
array
([
0.5
]).
astype
(
"float64"
)
y
=
np
.
array
([
0.5
]).
astype
(
"float64"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
...
@@ -95,6 +111,7 @@ class TestElementwiseMaxOp_scalar(TestElementwiseOp):
...
@@ -95,6 +111,7 @@ class TestElementwiseMaxOp_scalar(TestElementwiseOp):
class
TestElementwiseMaxOp_Vector
(
TestElementwiseOp
):
class
TestElementwiseMaxOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
self
.
op_type
=
"elementwise_max"
self
.
python_api
=
paddle
.
maximum
x
=
np
.
random
.
random
((
100
,
)).
astype
(
"float64"
)
x
=
np
.
random
.
random
((
100
,
)).
astype
(
"float64"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
"float64"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
"float64"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
"float64"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
"float64"
)
...
@@ -105,6 +122,7 @@ class TestElementwiseMaxOp_Vector(TestElementwiseOp):
...
@@ -105,6 +122,7 @@ class TestElementwiseMaxOp_Vector(TestElementwiseOp):
class
TestElementwiseMaxOp_broadcast_0
(
TestElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
self
.
op_type
=
"elementwise_max"
self
.
python_api
=
paddle
.
maximum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
5
,
2
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
5
,
2
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
y
=
x
[:,
0
,
0
]
+
sgn
*
\
...
@@ -121,6 +139,7 @@ class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
...
@@ -121,6 +139,7 @@ class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
class
TestElementwiseMaxOp_broadcast_1
(
TestElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_1
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
self
.
op_type
=
"elementwise_max"
self
.
python_api
=
paddle
.
maximum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
...
@@ -137,6 +156,7 @@ class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
...
@@ -137,6 +156,7 @@ class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
class
TestElementwiseMaxOp_broadcast_2
(
TestElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_2
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
self
.
op_type
=
"elementwise_max"
self
.
python_api
=
paddle
.
maximum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
1
,
3
,
100
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
1
,
3
,
100
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
...
@@ -152,6 +172,7 @@ class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
...
@@ -152,6 +172,7 @@ class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
class
TestElementwiseMaxOp_broadcast_3
(
TestElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_3
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
self
.
op_type
=
"elementwise_max"
self
.
python_api
=
paddle
.
maximum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
50
,
2
,
1
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
50
,
2
,
1
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
50
,
2
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
50
,
2
)).
astype
(
np
.
float64
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
...
@@ -168,6 +189,7 @@ class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
...
@@ -168,6 +189,7 @@ class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
class
TestElementwiseMaxOp_broadcast_4
(
TestElementwiseOp
):
class
TestElementwiseMaxOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
self
.
op_type
=
"elementwise_max"
self
.
python_api
=
paddle
.
maximum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float64
)
y
=
x
+
sgn
*
\
y
=
x
+
sgn
*
\
...
...
python/paddle/fluid/tests/unittests/test_elementwise_min_op.py
浏览文件 @
0d28edfa
...
@@ -27,6 +27,7 @@ paddle.enable_static()
...
@@ -27,6 +27,7 @@ paddle.enable_static()
class
TestElementwiseOp
(
OpTest
):
class
TestElementwiseOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
self
.
op_type
=
"elementwise_min"
self
.
python_api
=
paddle
.
minimum
# If x and y have the same value, the min() is not differentiable.
# If x and y have the same value, the min() is not differentiable.
# So we generate test data by the following method
# So we generate test data by the following method
# to avoid them being too close to each other.
# to avoid them being too close to each other.
...
@@ -37,10 +38,16 @@ class TestElementwiseOp(OpTest):
...
@@ -37,10 +38,16 @@ class TestElementwiseOp(OpTest):
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
if
hasattr
(
self
,
'attrs'
):
self
.
check_output
(
check_eager
=
False
)
else
:
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad_normal
(
self
):
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
if
hasattr
(
self
,
'attrs'
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
check_eager
=
False
)
else
:
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
check_eager
=
True
)
def
test_check_grad_ingore_x
(
self
):
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
self
.
check_grad
(
...
@@ -56,6 +63,7 @@ class TestElementwiseOp(OpTest):
...
@@ -56,6 +63,7 @@ class TestElementwiseOp(OpTest):
class
TestElementwiseMinOp_scalar
(
TestElementwiseOp
):
class
TestElementwiseMinOp_scalar
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
self
.
op_type
=
"elementwise_min"
self
.
python_api
=
paddle
.
minimum
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
10
,
3
,
4
]).
astype
(
"float64"
)
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
10
,
3
,
4
]).
astype
(
"float64"
)
y
=
np
.
array
([
0.5
]).
astype
(
"float64"
)
y
=
np
.
array
([
0.5
]).
astype
(
"float64"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
...
@@ -65,6 +73,7 @@ class TestElementwiseMinOp_scalar(TestElementwiseOp):
...
@@ -65,6 +73,7 @@ class TestElementwiseMinOp_scalar(TestElementwiseOp):
class
TestElementwiseMinOp_Vector
(
TestElementwiseOp
):
class
TestElementwiseMinOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
self
.
op_type
=
"elementwise_min"
self
.
python_api
=
paddle
.
minimum
x
=
np
.
random
.
random
((
100
,
)).
astype
(
"float64"
)
x
=
np
.
random
.
random
((
100
,
)).
astype
(
"float64"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
"float64"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
"float64"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
"float64"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
"float64"
)
...
@@ -75,6 +84,7 @@ class TestElementwiseMinOp_Vector(TestElementwiseOp):
...
@@ -75,6 +84,7 @@ class TestElementwiseMinOp_Vector(TestElementwiseOp):
class
TestElementwiseMinOp_broadcast_0
(
TestElementwiseOp
):
class
TestElementwiseMinOp_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
self
.
op_type
=
"elementwise_min"
self
.
python_api
=
paddle
.
minimum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
3
,
2
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
3
,
2
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
y
=
x
[:,
0
,
0
]
+
sgn
*
\
...
@@ -91,6 +101,7 @@ class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
...
@@ -91,6 +101,7 @@ class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
class
TestElementwiseMinOp_broadcast_1
(
TestElementwiseOp
):
class
TestElementwiseMinOp_broadcast_1
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
self
.
op_type
=
"elementwise_min"
self
.
python_api
=
paddle
.
minimum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
...
@@ -107,6 +118,7 @@ class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
...
@@ -107,6 +118,7 @@ class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
class
TestElementwiseMinOp_broadcast_2
(
TestElementwiseOp
):
class
TestElementwiseMinOp_broadcast_2
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
self
.
op_type
=
"elementwise_min"
self
.
python_api
=
paddle
.
minimum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
100
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
100
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float64
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
...
@@ -122,6 +134,7 @@ class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
...
@@ -122,6 +134,7 @@ class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
class
TestElementwiseMinOp_broadcast_3
(
TestElementwiseOp
):
class
TestElementwiseMinOp_broadcast_3
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
self
.
op_type
=
"elementwise_min"
self
.
python_api
=
paddle
.
minimum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
25
,
4
,
1
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
25
,
4
,
1
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
25
,
4
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
25
,
4
)).
astype
(
np
.
float64
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
...
@@ -138,6 +151,7 @@ class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
...
@@ -138,6 +151,7 @@ class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
class
TestElementwiseMinOp_broadcast_4
(
TestElementwiseOp
):
class
TestElementwiseMinOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
self
.
op_type
=
"elementwise_min"
self
.
python_api
=
paddle
.
minimum
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
10
,
2
,
5
)).
astype
(
np
.
float64
)
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
10
,
2
,
5
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
10
,
1
,
5
)).
astype
(
np
.
float64
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
10
,
1
,
5
)).
astype
(
np
.
float64
)
y
=
x
+
sgn
*
\
y
=
x
+
sgn
*
\
...
...
python/paddle/tensor/math.py
浏览文件 @
0d28edfa
...
@@ -177,6 +177,12 @@ def pow(x, y, name=None):
...
@@ -177,6 +177,12 @@ def pow(x, y, name=None):
raise
TypeError
(
'y must be scalar or tensor type, but received: %s '
%
(
type
(
y
)))
raise
TypeError
(
'y must be scalar or tensor type, but received: %s '
%
(
type
(
y
)))
OP_NAMEMAPPING
=
{
'elementwise_max'
:
'final_state_maximum'
,
'elementwise_min'
:
'final_state_minimum'
,
'elementwise_pow'
:
'final_state_elementwise_pow'
,
'elementwise_floordiv'
:
'final_state_floor_divide'
,
}
@
dygraph_only
@
dygraph_only
def
_elementwise_op_in_dygraph
(
x
,
def
_elementwise_op_in_dygraph
(
x
,
...
@@ -185,13 +191,20 @@ def _elementwise_op_in_dygraph(x,
...
@@ -185,13 +191,20 @@ def _elementwise_op_in_dygraph(x,
act
=
None
,
act
=
None
,
use_mkldnn
=
False
,
use_mkldnn
=
False
,
op_name
=
None
):
op_name
=
None
):
op
=
getattr
(
_C_ops
,
op_name
)
def
is_inplace
(
op_name
):
out
=
op
(
x
,
y
,
'axis'
,
axis
,
'use_mkldnn'
,
use_mkldnn
)
return
op_name
[
-
1
]
==
"_"
if
in_dygraph_mode
():
op
=
getattr
(
_C_ops
,
OP_NAMEMAPPING
[
op_name
]
if
not
is_inplace
(
op_name
)
else
op_name
)
out
=
op
(
x
,
y
)
if
_in_legacy_dygraph
():
op
=
getattr
(
_C_ops
,
op_name
)
out
=
op
(
x
,
y
,
'axis'
,
axis
,
'use_mkldnn'
,
use_mkldnn
)
return
dygraph_utils
.
_append_activation_in_dygraph
(
return
dygraph_utils
.
_append_activation_in_dygraph
(
out
,
act
,
use_mkldnn
=
use_mkldnn
)
out
,
act
,
use_mkldnn
=
use_mkldnn
)
def
_elementwise_op
(
helper
):
def
_elementwise_op
(
helper
):
op_type
=
helper
.
layer_type
op_type
=
helper
.
layer_type
original_op_type
=
helper
.
kwargs
.
get
(
'original_op_type'
,
op_type
)
original_op_type
=
helper
.
kwargs
.
get
(
'original_op_type'
,
op_type
)
...
...
python/paddle/utils/code_gen/api.yaml
浏览文件 @
0d28edfa
...
@@ -744,6 +744,15 @@
...
@@ -744,6 +744,15 @@
func
:
matrix_power
func
:
matrix_power
backward
:
matrix_power_grad
backward
:
matrix_power_grad
-
api
:
maximum
args
:
(Tensor x, Tensor y)
output
:
Tensor(out)
infer_meta
:
func
:
ElementwiseInferMeta
kernel
:
func
:
maximum
backward
:
maximum_grad
-
api
:
mean
-
api
:
mean
args
:
(Tensor x, int64_t[] axis={}, bool keep_dim=false)
args
:
(Tensor x, int64_t[] axis={}, bool keep_dim=false)
output
:
Tensor
output
:
Tensor
...
@@ -752,6 +761,15 @@
...
@@ -752,6 +761,15 @@
kernel
:
kernel
:
func
:
mean
func
:
mean
-
api
:
minimum
args
:
(Tensor x, Tensor y)
output
:
Tensor(out)
infer_meta
:
func
:
ElementwiseInferMeta
kernel
:
func
:
minimum
backward
:
minimum_grad
-
api
:
modulo
-
api
:
modulo
args
:
(Tensor x, Tensor y)
args
:
(Tensor x, Tensor y)
output
:
Tensor
output
:
Tensor
...
...
python/paddle/utils/code_gen/backward.yaml
浏览文件 @
0d28edfa
...
@@ -408,6 +408,26 @@
...
@@ -408,6 +408,26 @@
kernel
:
kernel
:
func
:
matrix_power_grad
func
:
matrix_power_grad
-
backward_api
:
maximum_grad
forward
:
maximum(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad, int axis=-1)
output
:
Tensor(x_grad), Tensor(y_grad)
infer_meta
:
func
:
GeneralBinaryGradInferMeta
param
:
[
x
,
y
]
kernel
:
func
:
maximum_grad
-
backward_api
:
minimum_grad
forward
:
minimum(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad, int axis=-1)
output
:
Tensor(x_grad), Tensor(y_grad)
infer_meta
:
func
:
GeneralBinaryGradInferMeta
param
:
[
x
,
y
]
kernel
:
func
:
minimum_grad
-
backward_api
:
modulo_grad
-
backward_api
:
modulo_grad
forward
:
add (Tensor x, Tensor y) -> Tensor(out)
forward
:
add (Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad, int axis = -1)
args
:
(Tensor x, Tensor y, Tensor out_grad, int axis = -1)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录