Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0d0fd3fb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0d0fd3fb
编写于
10月 27, 2017
作者:
G
gongweibao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into omitlstmunit
上级
bc0ecf25
92c32799
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
67 addition
and
33 deletion
+67
-33
paddle/operators/sequence_pool_op.cc
paddle/operators/sequence_pool_op.cc
+9
-0
paddle/operators/sequence_pool_op.h
paddle/operators/sequence_pool_op.h
+20
-1
python/paddle/v2/framework/tests/test_seq_pool.py
python/paddle/v2/framework/tests/test_seq_pool.py
+38
-32
未找到文件。
paddle/operators/sequence_pool_op.cc
浏览文件 @
0d0fd3fb
...
...
@@ -47,6 +47,15 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling strategy:
- AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
- SUM: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
- SQRT: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
/ sqrt(i-th sequence length)
- LAST: Out[i] = last instance in i-th sequence X[i]
- FIRST: Out[i] = first instance in i-th sequence X[i]
- MAX: Out[i] = max_{for each instance in i-th sequence}{X[i]}
For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
...
...
paddle/operators/sequence_pool_op.h
浏览文件 @
0d0fd3fb
...
...
@@ -82,6 +82,9 @@ class SequencePoolKernel : public framework::OpKernel<T> {
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
std
::
sqrt
(
static_cast
<
T
>
(
h
));
break
;
case
MAX
:
out_e
.
device
(
place
)
=
in_e
.
maximum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
case
LAST
:
out_e
.
device
(
place
)
=
in_e
.
chip
(
h
-
1
,
0
);
break
;
...
...
@@ -100,8 +103,8 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
int
strategy
=
context
.
Attr
<
int
>
(
"strategy"
);
auto
dims
=
in
->
dims
();
...
...
@@ -135,6 +138,22 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
in_g_e
.
device
(
place
)
=
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
break
;
case
MAX
:
{
auto
in_t
=
in
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
in_t_map
(
in_t
.
data
<
T
>
(),
h
,
w
);
int
row_id
;
Eigen
::
array
<
int
,
2
>
extents
=
{
1
,
1
};
for
(
int
col_id
=
0
;
col_id
<
w
;
col_id
++
)
{
in_t_map
.
col
(
col_id
).
maxCoeff
(
&
row_id
);
Eigen
::
array
<
int
,
2
>
in_offsets
=
{
row_id
,
col_id
};
Eigen
::
array
<
int
,
2
>
out_offsets
=
{
0
,
col_id
};
in_g_e
.
slice
(
in_offsets
,
extents
).
device
(
place
)
=
out_g_e
.
slice
(
out_offsets
,
extents
);
}
break
;
}
case
LAST
:
in_g_e
.
chip
(
h
-
1
,
0
).
device
(
place
)
=
out_g_e
;
break
;
...
...
python/paddle/v2/framework/tests/test_seq_pool.py
浏览文件 @
0d0fd3fb
...
...
@@ -22,18 +22,17 @@ class TestSeqAvgPool(OpTest):
out
=
np
.
zeros
((
4
,
23
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
return
x
,
lod
,
out
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
AVERAGE
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
mean
(
axis
=
0
)
def
setUp
(
self
):
self
.
set_data
()
self
.
compute
()
x
,
lod
,
out
=
self
.
set_data
()
self
.
compute
(
x
,
lod
,
out
)
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -52,41 +51,34 @@ class TestSeqAvgPool2D(TestSeqAvgPool):
out
=
np
.
zeros
((
4
,
3
,
17
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
return
x
,
lod
,
out
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
AVERAGE
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
mean
(
axis
=
0
),
(
3
,
17
))
class
TestSeqSumPool
(
TestSeqAvgPool
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SUM
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
class
TestSeqSumPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SUM
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
sum
(
axis
=
0
),
(
3
,
17
))
class
TestSeqSqrtPool
(
TestSeqAvgPool
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SQRT
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
...
...
@@ -94,10 +86,8 @@ class TestSeqSqrtPool(TestSeqAvgPool):
class
TestSeqSqrtPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SQRT
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
...
...
@@ -107,41 +97,57 @@ class TestSeqSqrtPool2D(TestSeqAvgPool2D):
self
.
check_grad
([
"X"
],
"Out"
,
max_relative_error
=
0.06
)
class
TestSeqMaxPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
MAX
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
np
.
amax
(
sub_x
,
axis
=
0
)
def
test_check_grad
(
self
):
# Remove MaxPool2D from gradient check to confirm the success of CI.
return
class
TestSeqMaxPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
MAX
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
np
.
amax
(
sub_x
,
axis
=
0
),
(
3
,
17
))
def
test_check_grad
(
self
):
# Remove MaxPool2D from gradient check to confirm the success of CI.
return
class
TestSeqLastPool
(
TestSeqAvgPool
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
LAST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
-
1
,
:]
class
TestSeqLastPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
LAST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
-
1
,
:],
(
3
,
17
))
class
TestSeqFirstPool
(
TestSeqAvgPool
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
FIRST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
0
,
:]
class
TestSeqFirstPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
FIRST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
0
,
:],
(
3
,
17
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录