未验证 提交 0cf841c9 编写于 作者: H hong 提交者: GitHub

New ir support combine op (#54682)

* add kernel dialect

* change DenseTensorTypeStorage to DenseTensorType

* add test case`

* add first pd_op to kernel dialect

* lower pd op to kernel dialect

* update

* update

* remove useless code

* add attrite print test

* fix bug

* update

* update

* update

* update

* polish code

* fix bug

* polish  code  and add python test

* add test

* fix test error

* add env flag

* fix bug

* revert test env

* change cc_test_old to cc_test

* fix build_static bug

* fix type test error

* udpate cmake

* disable test in windows

* update

* update

* fix bug

* split file

* fix conflict

* polish code and fix conflict

* polish code

* fix bug
上级 83c78be9
...@@ -948,7 +948,7 @@ void BuildOpFuncList( ...@@ -948,7 +948,7 @@ void BuildOpFuncList(
auto op_name = attr_map.at("op_name").dyn_cast<::ir::StrAttribute>().data(); auto op_name = attr_map.at("op_name").dyn_cast<::ir::StrAttribute>().data();
if (op_name == "pd.fetch") { if (op_name == "pd.fetch" || op_name == "builtin.combine") {
VLOG(6) << "skip process pd.fetch op"; VLOG(6) << "skip process pd.fetch op";
continue; continue;
} }
......
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/extended_tensor.h"
namespace paddle {
namespace framework {
template <typename T>
struct PhiVectorType;
template <typename T>
class PhiVector : public phi::ExtendedTensor,
public phi::TypeInfoTraits<phi::TensorBase, PhiVector<T>> {
public:
PhiVector() = default;
explicit PhiVector(const std::vector<T>& init_data) : data_(init_data) {}
PhiVector(PhiVector&& other) = default;
PhiVector(const PhiVector& other) = default;
PhiVector& operator=(const PhiVector& other) = default;
PhiVector& operator=(const std::vector<T>& other) {
data_ = other;
return *this;
}
PhiVector& operator=(PhiVector&& other) = default;
/// \brief Destroy the PhiVector and release exclusive resources.
virtual ~PhiVector() = default;
public:
/// \brief Returns the name of the class for type traits.
/// \return The name of the class.
static const char* name() { return PhiVectorType<T>().type_name; }
size_t size() const { return data_.size(); }
void resize(size_t size) { data_.resize(size); }
void clear() { data_.clear(); }
void emplace_back(const T& feed_data) { data_.emplace_back(feed_data); }
const T& operator[](size_t index) const { return data_[index]; }
T& operator[](size_t index) { return data_[index]; }
T& at(size_t index) { return data_.at(index); }
const T& at(size_t index) const { return data_.at(index); }
typename std::vector<T>::iterator begin() { return data_.begin(); }
typename std::vector<T>::const_iterator begin() const {
return data_.begin();
}
typename std::vector<T>::iterator end() { return data_.end(); }
typename std::vector<T>::const_iterator end() const { return data_.end(); }
private:
std::vector<T> data_;
};
} // namespace framework
} // namespace paddle
...@@ -20,6 +20,8 @@ limitations under the License. */ ...@@ -20,6 +20,8 @@ limitations under the License. */
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include "paddle/fluid/framework/phi_tensor_base_vector.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/extended_tensor.h" #include "paddle/phi/core/extended_tensor.h"
namespace paddle { namespace paddle {
...@@ -102,73 +104,11 @@ class Vocab : public phi::ExtendedTensor, ...@@ -102,73 +104,11 @@ class Vocab : public phi::ExtendedTensor,
// Kernel. It can be used when you define a non-tensor type that needs to be // Kernel. It can be used when you define a non-tensor type that needs to be
// stored in a vector as PHI kernel argument. // stored in a vector as PHI kernel argument.
template <typename T>
struct PhiVectorType;
template <> template <>
struct PhiVectorType<std::string> { struct PhiVectorType<std::string> {
const char* type_name = "PhiVectorString"; const char* type_name = "PhiVectorString";
}; };
template <typename T>
class PhiVector : public phi::ExtendedTensor,
public phi::TypeInfoTraits<phi::TensorBase, PhiVector<T>> {
public:
PhiVector() = default;
explicit PhiVector(const std::vector<T>& init_data) : data_(init_data) {}
PhiVector(PhiVector&& other) = default;
PhiVector(const PhiVector& other) = default;
PhiVector& operator=(const PhiVector& other) = default;
PhiVector& operator=(const std::vector<T>& other) {
data_ = other;
return *this;
}
PhiVector& operator=(PhiVector&& other) = default;
/// \brief Destroy the PhiVector and release exclusive resources.
virtual ~PhiVector() = default;
public:
/// \brief Returns the name of the class for type traits.
/// \return The name of the class.
static const char* name() { return PhiVectorType<T>().type_name; }
size_t size() const { return data_.size(); }
void resize(size_t size) { data_.resize(size); }
void clear() { data_.clear(); }
void emplace_back(const T& feed_data) { data_.emplace_back(feed_data); }
const T& operator[](size_t index) const { return data_[index]; }
T& operator[](size_t index) { return data_[index]; }
T& at(size_t index) { return data_.at(index); }
const T& at(size_t index) const { return data_.at(index); }
typename std::vector<T>::iterator begin() { return data_.begin(); }
typename std::vector<T>::const_iterator begin() const {
return data_.begin();
}
typename std::vector<T>::iterator end() { return data_.end(); }
typename std::vector<T>::const_iterator end() const { return data_.end(); }
private:
std::vector<T> data_;
};
using String = std::string; using String = std::string;
using Strings = PhiVector<std::string>; using Strings = PhiVector<std::string>;
......
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/phi_tensor_base_vector.h"
namespace paddle {
namespace framework {
template <>
struct PhiVectorType<const phi::DenseTensor*> {
const char* type_name = "PhiTensorRefArray";
};
using TensorRefArray = PhiVector<const phi::DenseTensor*>;
} // namespace framework
} // namespace paddle
...@@ -40,5 +40,7 @@ template class TypeInfoTraits<phi::TensorBase, paddle::framework::Strings>; ...@@ -40,5 +40,7 @@ template class TypeInfoTraits<phi::TensorBase, paddle::framework::Strings>;
template class TypeInfoTraits<phi::TensorBase, paddle::framework::FeedList>; template class TypeInfoTraits<phi::TensorBase, paddle::framework::FeedList>;
template class TypeInfoTraits<phi::TensorBase, egr::VariableCompatTensor>; template class TypeInfoTraits<phi::TensorBase, egr::VariableCompatTensor>;
template class TypeInfoTraits<phi::TensorBase, paddle::prim::DescTensor>; template class TypeInfoTraits<phi::TensorBase, paddle::prim::DescTensor>;
template class TypeInfoTraits<phi::TensorBase,
paddle::framework::TensorRefArray>;
} // namespace phi } // namespace phi
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
#include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/raw_tensor.h" #include "paddle/fluid/framework/raw_tensor.h"
#include "paddle/fluid/framework/string_array.h" #include "paddle/fluid/framework/string_array.h"
#include "paddle/fluid/framework/tensor_ref_array.h"
#include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
#include <cudnn.h> #include <cudnn.h>
...@@ -210,7 +211,8 @@ using VarTypeRegistry = detail::VarTypeRegistryImpl< ...@@ -210,7 +211,8 @@ using VarTypeRegistry = detail::VarTypeRegistryImpl<
std::vector<int>, std::vector<int>,
std::vector<float>, std::vector<float>,
std::vector<std::string>, std::vector<std::string>,
RawTensor>; RawTensor,
TensorRefArray>;
template <typename T> template <typename T>
struct VarTypeTrait { struct VarTypeTrait {
static_assert(VarTypeRegistry::IsRegistered<T>(), "Must be registered type"); static_assert(VarTypeRegistry::IsRegistered<T>(), "Must be registered type");
......
...@@ -34,82 +34,90 @@ phi::KernelKey GetKernelKey( ...@@ -34,82 +34,90 @@ phi::KernelKey GetKernelKey(
ir::Operation* op, ir::Operation* op,
const phi::Place& place, const phi::Place& place,
const std::unordered_map<ir::Value, ir::OpResult>& map_value_pair) { const std::unordered_map<ir::Value, ir::OpResult>& map_value_pair) {
phi::Backend kernel_backend = phi::Backend::UNDEFINED;
phi::DataLayout kernel_layout = phi::DataLayout::UNDEFINED;
phi::DataType kernel_data_type = phi::DataType::UNDEFINED;
paddle::dialect::OpYamlInfoInterface op_info_interface = paddle::dialect::OpYamlInfoInterface op_info_interface =
op->dyn_cast<paddle::dialect::OpYamlInfoInterface>(); op->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
auto op_info_res = op_info_interface.GetOpInfo(); std::vector<paddle::dialect::OpInputInfo> input_info;
if (op_info_interface) {
auto op_info_res = op_info_interface.GetOpInfo();
auto input_info = std::get<0>(op_info_res); input_info = std::get<0>(op_info_res);
// only suppurt non vector input for now // only suppurt non vector input for now
std::map<std::string, int> input_map; std::map<std::string, int> input_map;
int index = 0; int index = 0;
int tensor_input_number = 0; int tensor_input_number = 0;
for (auto& t : input_info) { for (auto& t : input_info) {
// todo filter attribute tensor // todo filter attribute tensor
input_map[t.name] = index++; input_map[t.name] = index++;
if (!t.is_mutable_attribute) { if (!t.is_mutable_attribute) {
tensor_input_number += 1; tensor_input_number += 1;
}
} }
}
std::map<std::string, std::string> attr_type_map; std::map<std::string, std::string> attr_type_map;
auto attr_info = std::get<1>(op_info_res); auto attr_info = std::get<1>(op_info_res);
for (auto& t : attr_info) { for (auto& t : attr_info) {
VLOG(6) << t.name << "\t" << t.type_name; VLOG(6) << t.name << "\t" << t.type_name;
attr_type_map[t.name] = t.type_name; attr_type_map[t.name] = t.type_name;
} }
auto runtime_info = std::get<3>(op_info_res); auto runtime_info = std::get<3>(op_info_res);
// get dtype infomation auto attr_map = op->attributes();
phi::Backend kernel_backend = phi::Backend::UNDEFINED; auto data_type_info = runtime_info.kernel_key_dtype;
phi::DataLayout kernel_layout = phi::DataLayout::UNDEFINED; if (data_type_info.size() > 0 && data_type_info[0] != "") {
phi::DataType kernel_data_type = phi::DataType::UNDEFINED; // only support single input and attribute
auto slot_name = data_type_info[0];
if (input_map.count(slot_name)) {
// parse from input
int in_index = input_map.at(slot_name);
dialect::DenseTensorType type =
op->operand(in_index)
.source()
.type()
.dyn_cast<paddle::dialect::DenseTensorType>();
kernel_data_type = TransToPhiDataType(type.dtype());
} else {
PADDLE_ENFORCE_EQ(attr_type_map.count(slot_name),
true,
phi::errors::PreconditionNotMet(
"[%s] MUST in attr map", slot_name));
kernel_data_type = attr_map.at(slot_name)
.dyn_cast<paddle::dialect::DataTypeAttribute>()
.data();
}
}
auto attr_map = op->attributes(); // parse all the input tensor
auto data_type_info = runtime_info.kernel_key_dtype; if (tensor_input_number == 0 || op->name() == "pd.full_") {
if (data_type_info.size() > 0 && data_type_info[0] != "") { // all the information have to get from attribute and context
// only support single input and attribute kernel_backend = paddle::experimental::ParseBackend(place);
auto slot_name = data_type_info[0];
if (input_map.count(slot_name)) {
// parse from input
int in_index = input_map.at(slot_name);
dialect::DenseTensorType type =
op->operand(in_index)
.source()
.type()
.dyn_cast<paddle::dialect::DenseTensorType>();
kernel_data_type = TransToPhiDataType(type.dtype());
} else {
PADDLE_ENFORCE_EQ(
attr_type_map.count(slot_name),
true,
phi::errors::PreconditionNotMet("[%s] MUST in attr map", slot_name));
kernel_data_type = attr_map.at(slot_name)
.dyn_cast<paddle::dialect::DataTypeAttribute>()
.data();
} }
} }
// parse all the input tensor if (op->num_operands() > 0) {
if (tensor_input_number == 0 || op->name() == "pd.full_") {
// all the information have to get from attribute and context
kernel_backend = paddle::experimental::ParseBackend(place);
} else {
paddle::experimental::detail::KernelKeyParser kernel_key_parser; paddle::experimental::detail::KernelKeyParser kernel_key_parser;
for (size_t i = 0; i < input_info.size(); ++i) { for (size_t i = 0; i < op->num_operands(); ++i) {
// todo filter attribute tensor // todo filter attribute tensor
if (input_info[i].is_mutable_attribute) { if ((input_info.size() > i) && input_info[i].is_mutable_attribute) {
continue; continue;
} }
auto input_tmp = op->operand(i).source(); auto input_tmp = op->operand(i).source();
auto new_input_tmp = map_value_pair.at(input_tmp); auto new_input_tmp = map_value_pair.at(input_tmp);
dialect::AllocatedDenseTensorType type = auto input_type = new_input_tmp.type();
new_input_tmp.type().dyn_cast<dialect::AllocatedDenseTensorType>(); dialect::AllocatedDenseTensorType type;
if (input_type.isa<dialect::AllocatedDenseTensorType>()) {
type = input_type.dyn_cast<dialect::AllocatedDenseTensorType>();
} else if (input_type.isa<ir::VectorType>()) {
type = input_type.dyn_cast<ir::VectorType>()[0]
.dyn_cast<dialect::AllocatedDenseTensorType>();
}
// fake tensor here // fake tensor here
auto ptr = new phi::Allocation(nullptr, 0, type.place()); auto ptr = new phi::Allocation(nullptr, 0, type.place());
...@@ -164,7 +172,7 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) { ...@@ -164,7 +172,7 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) {
for (auto it = block->begin(); it != block->end(); ++it) { for (auto it = block->begin(); it != block->end(); ++it) {
VLOG(6) << "op name " << (*it)->name(); VLOG(6) << "op name " << (*it)->name();
auto kernel_key = GetKernelKey(*it, cpu_place, map_value_pair); auto kernel_key = GetKernelKey(*it, cpu_place, map_value_pair);
VLOG(6) << "kernel type " << kernel_key;
// create new Op // create new Op
// only for single output // only for single output
...@@ -172,14 +180,35 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) { ...@@ -172,14 +180,35 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) {
std::vector<ir::Type> op_output_types; std::vector<ir::Type> op_output_types;
if ((*it)->num_results() > 0) { if ((*it)->num_results() > 0) {
// filter tensor attribute auto result_type = (*it)->result(0).type();
auto allocated_dense_tensor_dtype = if (result_type.isa<dialect::DenseTensorType>()) {
paddle::dialect::AllocatedDenseTensorType::get( auto allocated_dense_tensor_dtype =
ctx, paddle::dialect::AllocatedDenseTensorType::get(
phi::TransToPhiPlace(kernel_key.backend()), ctx,
(*it)->result(0).type().dyn_cast<dialect::DenseTensorType>()); phi::TransToPhiPlace(kernel_key.backend()),
op_output_types.push_back(allocated_dense_tensor_dtype); result_type.dyn_cast<dialect::DenseTensorType>());
op_output_types.push_back(allocated_dense_tensor_dtype);
} else if (result_type.isa<ir::VectorType>()) {
auto pos1 = result_type.dyn_cast<ir::VectorType>().data()[0];
if (pos1.isa<dialect::DenseTensorType>()) {
auto allocated_dense_tensor_dtype =
paddle::dialect::AllocatedDenseTensorType::get(
ctx,
phi::TransToPhiPlace(kernel_key.backend()),
pos1.dyn_cast<dialect::DenseTensorType>());
op_output_types.push_back(allocated_dense_tensor_dtype);
} else {
PADDLE_THROW(phi::errors::Unimplemented(
"only support dense tensor in vector type for now"));
}
ir::Type t1 = ir::VectorType::get(ctx, op_output_types);
op_output_types.clear();
op_output_types.push_back(t1);
}
} }
// constuct input // constuct input
std::vector<ir::OpResult> vec_inputs; std::vector<ir::OpResult> vec_inputs;
...@@ -194,13 +223,16 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) { ...@@ -194,13 +223,16 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog) {
paddle::dialect::OpYamlInfoInterface op_info_interface = paddle::dialect::OpYamlInfoInterface op_info_interface =
(*it)->dyn_cast<paddle::dialect::OpYamlInfoInterface>(); (*it)->dyn_cast<paddle::dialect::OpYamlInfoInterface>();
auto op_info_res = op_info_interface.GetOpInfo(); std::string kernel_fn_str;
auto runtime_info = std::get<3>(op_info_res); if (op_info_interface) {
auto op_info_res = op_info_interface.GetOpInfo();
auto runtime_info = std::get<3>(op_info_res);
kernel_fn_str = runtime_info.kernel_func[0];
}
std::unordered_map<std::string, ir::Attribute> op1_attribute{ std::unordered_map<std::string, ir::Attribute> op1_attribute{
{"op_name", ir::StrAttribute::get(ctx, (*it)->name())}, {"op_name", ir::StrAttribute::get(ctx, (*it)->name())},
{"kernel_name", {"kernel_name", ir::StrAttribute::get(ctx, kernel_fn_str)},
ir::StrAttribute::get(ctx, runtime_info.kernel_func[0])},
{"kernel_key", dialect::KernelAttribute::get(ctx, kernel_key)}}; {"kernel_key", dialect::KernelAttribute::get(ctx, kernel_key)}};
auto op_attr_map = (*it)->attributes(); auto op_attr_map = (*it)->attributes();
......
...@@ -30,6 +30,8 @@ ...@@ -30,6 +30,8 @@
#include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/framework/variable_helper.h"
#include "paddle/phi/core/kernel_context.h" #include "paddle/phi/core/kernel_context.h"
#include "paddle/fluid/framework/string_array.h"
#include "paddle/fluid/framework/tensor_ref_array.h"
#include "paddle/fluid/ir/dialect/kernel_attribute.h" #include "paddle/fluid/ir/dialect/kernel_attribute.h"
#include "paddle/fluid/ir/dialect/pd_attribute.h" #include "paddle/fluid/ir/dialect/pd_attribute.h"
...@@ -70,6 +72,36 @@ void BuildScope(ir::Block* block, ...@@ -70,6 +72,36 @@ void BuildScope(ir::Block* block,
continue; continue;
} }
if (op_name == "builtin.combine") {
auto out_value = (*it)->result(0);
VLOG(5) << "process builtin combine";
std::string name;
if (name_map->find(out_value) != name_map->end()) {
name = name_map->at(out_value);
} else {
name = "inner_var_" + std::to_string(count++);
name_map->emplace(out_value, name);
}
auto var = scope->Var(name);
auto tensor_array = var->GetMutable<paddle::framework::TensorRefArray>();
for (size_t i = 0; i < input_num; ++i) {
auto ptr = (*it)->operand(i).source();
PADDLE_ENFORCE_EQ(name_map->count(ptr),
true,
phi::errors::PreconditionNotMet(
"can not found input of combine op"));
tensor_array->emplace_back(
&(scope->Var(name_map->at(ptr))->Get<phi::DenseTensor>()));
}
continue;
}
if (input_num > 0) { if (input_num > 0) {
for (size_t i = 0; i < input_num; ++i) { for (size_t i = 0; i < input_num; ++i) {
auto ptr = (*it)->operand(i).source(); auto ptr = (*it)->operand(i).source();
...@@ -138,7 +170,10 @@ void BuildInferMetaContext( ...@@ -138,7 +170,10 @@ void BuildInferMetaContext(
// int input_index = 0; // int input_index = 0;
std::vector<std::string> vec_param_list = runtime_info.infer_meta_param; std::vector<std::string> vec_param_list = runtime_info.infer_meta_param;
for (auto& t : vec_param_list) { for (size_t input_index = 0; input_index < vec_param_list.size();
input_index++) {
auto& t = vec_param_list[input_index];
if (input_index_map.count(t)) { if (input_index_map.count(t)) {
// get information from input // get information from input
ir::Value ptr = op->operand(input_index_map[t]).source(); ir::Value ptr = op->operand(input_index_map[t]).source();
...@@ -165,8 +200,19 @@ void BuildInferMetaContext( ...@@ -165,8 +200,19 @@ void BuildInferMetaContext(
} else { } else {
VLOG(6) << "ctx->EmplaceBackInput: " << t << "\t" << in_var_name; VLOG(6) << "ctx->EmplaceBackInput: " << t << "\t" << in_var_name;
auto var = scope->Var(in_var_name); auto var = scope->Var(in_var_name);
const phi::TensorBase* tensor_in = &(var->Get<phi::DenseTensor>()); if (var->IsType<phi::DenseTensor>()) {
ctx->EmplaceBackInput(const_cast<phi::TensorBase*>(tensor_in)); const phi::TensorBase* tensor_in = &(var->Get<phi::DenseTensor>());
ctx->EmplaceBackInput(const_cast<phi::TensorBase*>(tensor_in));
} else {
paddle::small_vector<phi::MetaTensor, phi::kInputSmallVectorSize>
inputs;
auto& tensor_array = var->Get<paddle::framework::TensorRefArray>();
for (size_t i = 0; i < tensor_array.size(); ++i) {
inputs.emplace_back(std::move(phi::MetaTensor(*tensor_array[i])));
}
ctx->EmplaceBackInputs(std::move(inputs));
}
} }
} }
...@@ -277,8 +323,18 @@ void BuildPhiKernelContext( ...@@ -277,8 +323,18 @@ void BuildPhiKernelContext(
in_var_name)); in_var_name));
auto var = scope->Var(in_var_name); auto var = scope->Var(in_var_name);
const phi::TensorBase* tensor_in = &(var->Get<phi::DenseTensor>()); if (var->IsType<phi::DenseTensor>()) {
ctx->EmplaceBackInput(tensor_in); const phi::TensorBase* tensor_in = &(var->Get<phi::DenseTensor>());
ctx->EmplaceBackInput(tensor_in);
} else {
paddle::small_vector<const phi::TensorBase*> inputs;
auto& tensor_array = var->Get<paddle::framework::TensorRefArray>();
for (size_t i = 0; i < tensor_array.size(); ++i) {
inputs.emplace_back(tensor_array[i]);
}
ctx->EmplaceBackInputs(std::move(inputs));
}
} }
} }
......
...@@ -22,7 +22,33 @@ import paddle ...@@ -22,7 +22,33 @@ import paddle
paddle.enable_static() paddle.enable_static()
class TestNewIr(unittest.TestCase): # class TestNewIr(unittest.TestCase):
# def test_with_new_ir(self):
# place = paddle.CPUPlace()
# exe = paddle.static.Executor(place)
# x = paddle.ones([2, 2], dtype="float32")
# y = paddle.ones([2, 2], dtype="float32")
# z = x + y
# out = exe.run(
# paddle.static.default_main_program(), {}, fetch_list=[z.name]
# )
# gold_res = np.ones([2, 2], dtype="float32") * 2
# self.assertEqual(
# np.array_equal(
# np.array(
# paddle.static.global_scope().find_var(z.name).get_tensor()
# ),
# gold_res,
# ),
# True,
# )
class TestCombineOp(unittest.TestCase):
def test_with_new_ir(self): def test_with_new_ir(self):
place = paddle.CPUPlace() place = paddle.CPUPlace()
exe = paddle.static.Executor(place) exe = paddle.static.Executor(place)
...@@ -30,7 +56,7 @@ class TestNewIr(unittest.TestCase): ...@@ -30,7 +56,7 @@ class TestNewIr(unittest.TestCase):
x = paddle.ones([2, 2], dtype="float32") x = paddle.ones([2, 2], dtype="float32")
y = paddle.ones([2, 2], dtype="float32") y = paddle.ones([2, 2], dtype="float32")
z = x + y z = paddle.linalg.multi_dot([x, y])
out = exe.run( out = exe.run(
paddle.static.default_main_program(), {}, fetch_list=[z.name] paddle.static.default_main_program(), {}, fetch_list=[z.name]
) )
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册