Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0cc85d79
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0cc85d79
编写于
9月 26, 2017
作者:
T
Tao Luo
提交者:
GitHub
9月 26, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4331 from tensor-tang/mkldnn_softmax
Add mkldnn_softmax
上级
7d653216
672c9681
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
226 addition
and
132 deletion
+226
-132
benchmark/paddle/image/run_mkldnn.sh
benchmark/paddle/image/run_mkldnn.sh
+1
-4
paddle/gserver/activations/MKLDNNActivation.cpp
paddle/gserver/activations/MKLDNNActivation.cpp
+187
-25
paddle/gserver/activations/MKLDNNActivation.h
paddle/gserver/activations/MKLDNNActivation.h
+35
-100
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+2
-2
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+1
-1
未找到文件。
benchmark/paddle/image/run_mkldnn.sh
浏览文件 @
0cc85d79
...
@@ -9,11 +9,9 @@ function train() {
...
@@ -9,11 +9,9 @@ function train() {
bs
=
$2
bs
=
$2
use_mkldnn
=
$3
use_mkldnn
=
$3
if
[
$3
==
"True"
]
;
then
if
[
$3
==
"True"
]
;
then
use_mkldnn
=
$3
thread
=
1
thread
=
1
log
=
"logs/
${
topology
}
-mkldnn-
${
bs
}
.log"
log
=
"logs/
${
topology
}
-mkldnn-
${
bs
}
.log"
elif
[
$3
==
"False"
]
;
then
elif
[
$3
==
"False"
]
;
then
use_mkldnn
=
$3
thread
=
`
nproc
`
thread
=
`
nproc
`
log
=
"logs/
${
topology
}
-
${
thread
}
mklml-
${
bs
}
.log"
log
=
"logs/
${
topology
}
-
${
thread
}
mklml-
${
bs
}
.log"
else
else
...
@@ -39,8 +37,7 @@ if [ ! -d "logs" ]; then
...
@@ -39,8 +37,7 @@ if [ ! -d "logs" ]; then
mkdir
logs
mkdir
logs
fi
fi
#========= mkldnn =========#
#========== mkldnn ==========#
# vgg
train vgg 64 True
train vgg 64 True
train vgg 128 True
train vgg 128 True
train vgg 256 True
train vgg 256 True
...
...
paddle/gserver/activations/MKLDNNActivation.cpp
浏览文件 @
0cc85d79
...
@@ -27,31 +27,53 @@ static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
...
@@ -27,31 +27,53 @@ static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
#define MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) mkldnn_##ACT_TYPE##Activation
#define MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) mkldnn_##ACT_TYPE##Activation
/**
/**
* @def DEFINE_MKLDNN_ELTWISE_ACTIVATION
* @def BEGIN_MKLDNN_ACTIVATION
*/
#define BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) : public BASE_CLASS {
/**
* @def END_MKLDNN_ACTIVATION
*/
*/
#define DEFINE_MKLDNN_ELTWISE_ACTIVATION(ACT_TYPE, ALPHA, BWD_ALPHA) \
#define END_MKLDNN_ACTIVATION(ACT_TYPE) \
class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) \
private: \
: public MKLDNNEltwiseActivation { \
static const std::string name; \
private: \
\
static const std::string name; \
public: \
static const float alpha; \
const std::string& getName() const { return name; } \
static const float bwdAlpha; \
} \
\
; \
public: \
const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name = \
const std::string& getName() const { return name; } \
"mkldnn_" #ACT_TYPE; \
float getAlpha() const { return alpha; } \
static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] { \
float getBwdAlpha() const { return bwdAlpha; } \
gMKLDNNActivationRegistrar \
}; \
.registerClass<MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)>( \
const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name = \
"mkldnn_" #ACT_TYPE); \
"mkldnn_" #ACT_TYPE; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::alpha = ALPHA; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::bwdAlpha = BWD_ALPHA; \
static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] { \
gMKLDNNActivationRegistrar \
.registerClass<MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)>( \
"mkldnn_" #ACT_TYPE); \
});
});
/**
* @def DEFINE_MKLDNN_ACTIVATION
*/
#define DEFINE_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
END_MKLDNN_ACTIVATION(ACT_TYPE)
/**
* @def DEFINE_MKLDNN_ELTWISE_ACTIVATION
*/
#define DEFINE_MKLDNN_ELTWISE_ACTIVATION( \
ACT_TYPE, BASE_CLASS, ALPHA, BWD_ALPHA) \
BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
private: \
static const float alpha; \
static const float bwdAlpha; \
\
public: \
float getAlpha() const { return alpha; } \
float getBwdAlpha() const { return bwdAlpha; } \
END_MKLDNN_ACTIVATION(ACT_TYPE) \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::alpha = ALPHA; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::bwdAlpha = BWD_ALPHA;
/**
/**
* @brief MKLDNN Relu Activation.
* @brief MKLDNN Relu Activation.
* Actually mkldnn_relu is Leaky Relu.
* Actually mkldnn_relu is Leaky Relu.
...
@@ -59,19 +81,129 @@ static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
...
@@ -59,19 +81,129 @@ static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
* f(x) = negative_slope * x (x < 0)
* f(x) = negative_slope * x (x < 0)
* @note the negative_slope should be -0.f in forward
* @note the negative_slope should be -0.f in forward
*/
*/
DEFINE_MKLDNN_ELTWISE_ACTIVATION
(
relu
,
-
0.
f
,
0.
f
)
DEFINE_MKLDNN_ELTWISE_ACTIVATION
(
relu
,
MKLDNNEltwiseActivation
,
-
0.
f
,
0.
f
)
/**
/**
* @brief MKLDNN Tanh Activation.
* @brief MKLDNN Tanh Activation.
*/
*/
DEFINE_MKLDNN_ELTWISE_ACTIVATION
(
tanh
,
0.
f
,
0.
f
)
DEFINE_MKLDNN_ELTWISE_ACTIVATION
(
tanh
,
MKLDNNEltwiseActivation
,
0.
f
,
0.
f
)
/**
/**
* @brief MKLDNN ELU(Exponential Linear Unit) Activation.
* @brief MKLDNN ELU(Exponential Linear Unit) Activation.
* f(x) = x (x >= 0)
* f(x) = x (x >= 0)
* f(x) = negative_slope * (exp(x) - 1) (x < 0)
* f(x) = negative_slope * (exp(x) - 1) (x < 0)
*/
*/
DEFINE_MKLDNN_ELTWISE_ACTIVATION
(
elu
,
0.
f
,
0.
f
)
DEFINE_MKLDNN_ELTWISE_ACTIVATION
(
elu
,
MKLDNNEltwiseActivation
,
0.
f
,
0.
f
)
mkldnn
::
algorithm
MKLDNNEltwiseActivation
::
getAlgo
(
std
::
string
type
)
const
{
const
std
::
map
<
std
::
string
,
mkldnn
::
algorithm
>
algoMap
=
{
{
"relu"
,
algorithm
::
eltwise_relu
},
{
"tanh"
,
algorithm
::
eltwise_tanh
},
{
"elu"
,
algorithm
::
eltwise_elu
}};
type
.
erase
(
0
,
7
);
// remove mkldnn_
algorithm
algo
=
(
algorithm
)
0
;
mapGet
(
type
,
algoMap
,
&
algo
);
return
algo
;
}
void
MKLDNNEltwiseActivation
::
resetFwd
(
Argument
&
act
)
{
if
(
cnt_
==
act
.
value
->
getElementCnt
())
{
return
;
}
MKLDNNActivation
::
resetFwd
(
act
);
// note: alpha represents the NegativeSlope when used in relu.
float
alpha
=
getAlpha
();
float
beta
=
getBeta
();
algorithm
algo
=
getAlgo
(
this
->
getName
());
auto
fwdDesc
=
eltwise_fwd
::
desc
(
mkldnn
::
prop_kind
::
forward_training
,
algo
,
val_
->
getMemoryDesc
(),
alpha
,
beta
);
fwdPD_
.
reset
(
new
eltwise_fwd
::
primitive_desc
(
fwdDesc
,
*
engine_
));
// use inplace for forward but save input value before submit
inVal_
=
val_
;
copyInVal_
=
nullptr
;
if
(
act
.
grad
&&
algo
==
algorithm
::
eltwise_tanh
)
{
// tanh need save src input for backward
inVal_
=
MKLDNNMatrix
::
create
(
nullptr
,
val_
->
getPrimitiveDesc
());
copyInVal_
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
val_
,
*
inVal_
);
CHECK
(
copyInVal_
)
<<
"should not be emptry"
;
pipelineFwd_
.
push_back
(
*
copyInVal_
);
}
fwd_
.
reset
(
new
eltwise_fwd
(
*
fwdPD_
,
*
val_
,
*
val_
));
pipelineFwd_
.
push_back
(
*
fwd_
);
needResetBwd_
=
true
;
}
void
MKLDNNEltwiseActivation
::
resetBwd
(
Argument
&
act
)
{
if
(
!
needResetBwd_
)
{
return
;
}
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" reset mkldnn backward"
;
needResetBwd_
=
false
;
algorithm
algo
=
getAlgo
(
this
->
getName
());
float
alpha
=
getBwdAlpha
();
float
beta
=
getBeta
();
grad_
=
MKLDNNMatrix
::
create
(
act
.
grad
,
val_
->
getPrimitiveDesc
());
auto
eng
=
CPUEngine
::
Instance
().
getEngine
();
auto
bwdDesc
=
eltwise_bwd
::
desc
(
algo
,
grad_
->
getMemoryDesc
(),
val_
->
getMemoryDesc
(),
alpha
,
beta
);
auto
bwdPD
=
eltwise_bwd
::
primitive_desc
(
bwdDesc
,
eng
,
*
fwdPD_
);
CHECK
(
inVal_
);
bwd_
.
reset
(
new
eltwise_bwd
(
bwdPD
,
*
inVal_
,
*
grad_
,
*
grad_
));
pipelineBwd_
.
clear
();
pipelineBwd_
.
push_back
(
*
bwd_
);
}
/**
* @brief MKLDNN Softmax Activation
*/
DEFINE_MKLDNN_ACTIVATION
(
softmax
,
MKLDNNSoftmaxActivation
)
void
MKLDNNSoftmaxActivation
::
resetFwd
(
Argument
&
act
)
{
if
(
cnt_
==
act
.
value
->
getElementCnt
())
{
return
;
}
MKLDNNActivation
::
resetFwd
(
act
);
int
axis
=
1
;
auto
fwdDesc
=
softmax_fwd
::
desc
(
mkldnn
::
prop_kind
::
forward_scoring
,
val_
->
getMemoryDesc
(),
axis
);
auto
fwdPD
=
softmax_fwd
::
primitive_desc
(
fwdDesc
,
*
engine_
);
fwd_
.
reset
(
new
softmax_fwd
(
fwdPD
,
*
val_
,
*
val_
));
pipelineFwd_
.
push_back
(
*
fwd_
);
}
Error
__must_check
MKLDNNSoftmaxActivation
::
forward
(
Argument
&
act
)
{
resetFwd
(
act
);
stream_
->
submit
(
pipelineFwd_
);
real
*
v
=
act
.
value
->
getData
();
real
threshold
=
exp
(
-
64
);
#pragma omp parallel for
for
(
size_t
i
=
0
;
i
<
act
.
value
->
getElementCnt
();
++
i
)
{
v
[
i
]
=
v
[
i
]
<
threshold
?
threshold
:
v
[
i
];
}
return
Error
();
}
Error
__must_check
MKLDNNSoftmaxActivation
::
backward
(
Argument
&
act
)
{
MatrixPtr
outputV
=
act
.
value
;
MatrixPtr
outputG
=
act
.
grad
;
Matrix
::
resizeOrCreate
(
sftMaxDot_
,
outputG
->
getHeight
(),
outputG
->
getWidth
(),
/* trans */
false
,
/* useGpu */
false
);
Matrix
::
resizeOrCreate
(
sftMaxSum_
,
outputG
->
getHeight
(),
1
,
/* trans */
false
,
/* useGpu */
false
);
sftMaxDot_
->
dotMul
(
*
outputG
,
*
outputV
);
sftMaxSum_
->
colMerge
(
*
sftMaxDot_
);
act
.
grad
->
softmaxDerivative
(
*
act
.
value
,
*
sftMaxSum_
);
return
Error
();
}
ActivationFunction
*
MKLDNNActivation
::
create
(
const
std
::
string
&
type
)
{
ActivationFunction
*
MKLDNNActivation
::
create
(
const
std
::
string
&
type
)
{
return
gMKLDNNActivationRegistrar
.
createByType
(
type
);
return
gMKLDNNActivationRegistrar
.
createByType
(
type
);
...
@@ -84,4 +216,34 @@ std::vector<std::string> MKLDNNActivation::getAllRegisteredTypes() {
...
@@ -84,4 +216,34 @@ std::vector<std::string> MKLDNNActivation::getAllRegisteredTypes() {
return
types
;
return
types
;
}
}
void
MKLDNNActivation
::
resetFwd
(
Argument
&
act
)
{
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" reset mkldnn forward"
;
cnt_
=
act
.
value
->
getElementCnt
();
pipelineFwd_
.
clear
();
stream_
.
reset
(
new
MKLDNNStream
());
engine_
.
reset
(
new
mkldnn
::
engine
(
mkldnn
::
engine
::
cpu
,
0
));
val_
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
act
.
value
);
if
(
val_
==
nullptr
)
{
int
bs
=
act
.
getBatchSize
();
int
ih
=
act
.
getFrameHeight
()
>
0
?
act
.
getFrameHeight
()
:
1
;
int
iw
=
act
.
getFrameWidth
()
>
0
?
act
.
getFrameWidth
()
:
1
;
int
ic
=
cnt_
/
bs
/
ih
/
iw
;
CHECK_EQ
(
cnt_
,
(
size_t
)
bs
*
ic
*
ih
*
iw
);
val_
=
MKLDNNMatrix
::
create
(
act
.
value
,
{
bs
,
ic
,
ih
,
iw
},
mkldnn
::
memory
::
format
::
nchw
,
*
engine_
);
CHECK
(
val_
);
val_
->
downSpatial
();
}
}
Error
__must_check
MKLDNNActivation
::
forward
(
Argument
&
act
)
{
resetFwd
(
act
);
stream_
->
submit
(
pipelineFwd_
);
return
Error
();
}
Error
__must_check
MKLDNNActivation
::
backward
(
Argument
&
act
)
{
resetBwd
(
act
);
stream_
->
submit
(
pipelineBwd_
);
return
Error
();
}
}
// namespace paddle
}
// namespace paddle
paddle/gserver/activations/MKLDNNActivation.h
浏览文件 @
0cc85d79
...
@@ -36,6 +36,7 @@ protected:
...
@@ -36,6 +36,7 @@ protected:
// mkldnn matrix, primitive, stream and pipeline
// mkldnn matrix, primitive, stream and pipeline
MKLDNNMatrixPtr
val_
;
MKLDNNMatrixPtr
val_
;
MKLDNNMatrixPtr
grad_
;
MKLDNNMatrixPtr
grad_
;
std
::
shared_ptr
<
mkldnn
::
engine
>
engine_
;
std
::
shared_ptr
<
MKLDNNStream
>
stream_
;
std
::
shared_ptr
<
MKLDNNStream
>
stream_
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
fwd_
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
fwd_
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
bwd_
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
bwd_
;
...
@@ -48,8 +49,18 @@ public:
...
@@ -48,8 +49,18 @@ public:
static
ActivationFunction
*
create
(
const
std
::
string
&
type
);
static
ActivationFunction
*
create
(
const
std
::
string
&
type
);
static
std
::
vector
<
std
::
string
>
getAllRegisteredTypes
();
static
std
::
vector
<
std
::
string
>
getAllRegisteredTypes
();
virtual
const
std
::
string
&
getName
()
const
=
0
;
virtual
const
std
::
string
&
getName
()
const
=
0
;
virtual
Error
__must_check
forward
(
Argument
&
act
)
=
0
;
/**
virtual
Error
__must_check
backward
(
Argument
&
act
)
=
0
;
* reset the forward primitives
*/
virtual
void
resetFwd
(
Argument
&
act
);
/**
* reset the backward primitives,
* can not merge this functions into resetFwd as the grad data
* would be changing before backward.
*/
virtual
void
resetBwd
(
Argument
&
act
)
{}
virtual
Error
__must_check
forward
(
Argument
&
act
);
virtual
Error
__must_check
backward
(
Argument
&
act
);
};
};
/**
/**
...
@@ -59,6 +70,7 @@ public:
...
@@ -59,6 +70,7 @@ public:
class
MKLDNNEltwiseActivation
:
public
MKLDNNActivation
{
class
MKLDNNEltwiseActivation
:
public
MKLDNNActivation
{
typedef
mkldnn
::
eltwise_forward
eltwise_fwd
;
typedef
mkldnn
::
eltwise_forward
eltwise_fwd
;
typedef
mkldnn
::
eltwise_backward
eltwise_bwd
;
typedef
mkldnn
::
eltwise_backward
eltwise_bwd
;
typedef
mkldnn
::
algorithm
algorithm
;
protected:
protected:
// save the forward primitive desc, which can be used backward
// save the forward primitive desc, which can be used backward
...
@@ -70,9 +82,7 @@ protected:
...
@@ -70,9 +82,7 @@ protected:
public:
public:
MKLDNNEltwiseActivation
()
{}
MKLDNNEltwiseActivation
()
{}
~
MKLDNNEltwiseActivation
()
{}
~
MKLDNNEltwiseActivation
()
{}
virtual
const
std
::
string
&
getName
()
const
=
0
;
virtual
const
std
::
string
&
getName
()
const
=
0
;
// in common, the alpha of forward and backward should be equal.
// in common, the alpha of forward and backward should be equal.
...
@@ -80,105 +90,30 @@ public:
...
@@ -80,105 +90,30 @@ public:
virtual
float
getAlpha
()
const
=
0
;
virtual
float
getAlpha
()
const
=
0
;
virtual
float
getBwdAlpha
()
const
=
0
;
virtual
float
getBwdAlpha
()
const
=
0
;
virtual
float
getBeta
()
const
{
return
0.
f
;
}
virtual
float
getBeta
()
const
{
return
0.
f
;
}
virtual
mkldnn
::
algorithm
getAlgo
(
const
std
::
string
&
type
)
const
{
virtual
algorithm
getAlgo
(
std
::
string
type
)
const
;
if
(
type
==
"mkldnn_relu"
)
{
void
resetFwd
(
Argument
&
act
)
override
;
return
mkldnn
::
algorithm
::
eltwise_relu
;
void
resetBwd
(
Argument
&
act
)
override
;
}
else
if
(
type
==
"mkldnn_tanh"
)
{
};
return
mkldnn
::
algorithm
::
eltwise_tanh
;
}
else
if
(
type
==
"mkldnn_elu"
)
{
return
mkldnn
::
algorithm
::
eltwise_elu
;
}
else
{
LOG
(
FATAL
)
<<
"Unkown eltwise activation type: "
<<
type
;
}
return
(
mkldnn
::
algorithm
)
0
;
}
/**
* reshape and reset the forward primitives
*/
void
resetFwd
(
Argument
&
act
)
{
if
(
cnt_
==
act
.
value
->
getElementCnt
())
{
return
;
}
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" reset mkldnn forward"
;
cnt_
=
act
.
value
->
getElementCnt
();
stream_
.
reset
(
new
MKLDNNStream
());
auto
eng
=
CPUEngine
::
Instance
().
getEngine
();
// get algo setting
mkldnn
::
algorithm
algo
=
getAlgo
(
this
->
getName
());
// note: alpha represents the NegativeSlope when used in relu.
float
alpha
=
getAlpha
();
float
beta
=
getBeta
();
pipelineFwd_
.
clear
();
val_
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
act
.
value
);
if
(
val_
==
nullptr
)
{
int
bs
=
act
.
getBatchSize
();
int
ih
=
act
.
getFrameHeight
()
>
0
?
act
.
getFrameHeight
()
:
1
;
int
iw
=
act
.
getFrameWidth
()
>
0
?
act
.
getFrameWidth
()
:
1
;
int
ic
=
cnt_
/
bs
/
ih
/
iw
;
CHECK_EQ
(
cnt_
,
(
size_t
)
bs
*
ic
*
ih
*
iw
);
val_
=
MKLDNNMatrix
::
create
(
act
.
value
,
{
bs
,
ic
,
ih
,
iw
},
mkldnn
::
memory
::
format
::
nchw
,
eng
);
CHECK
(
val_
);
}
auto
fwdDesc
=
eltwise_fwd
::
desc
(
mkldnn
::
prop_kind
::
forward_training
,
algo
,
val_
->
getMemoryDesc
(),
alpha
,
beta
);
fwdPD_
.
reset
(
new
eltwise_fwd
::
primitive_desc
(
fwdDesc
,
eng
));
// use inplace for forward but save input value before submit
inVal_
=
val_
;
copyInVal_
=
nullptr
;
if
(
act
.
grad
&&
algo
==
mkldnn
::
algorithm
::
eltwise_tanh
)
{
// tanh need save src input for backward
inVal_
=
MKLDNNMatrix
::
create
(
nullptr
,
val_
->
getPrimitiveDesc
());
copyInVal_
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
val_
,
*
inVal_
);
CHECK
(
copyInVal_
)
<<
"should not be emptry"
;
pipelineFwd_
.
push_back
(
*
copyInVal_
);
}
fwd_
.
reset
(
new
eltwise_fwd
(
*
fwdPD_
,
*
val_
,
*
val_
));
pipelineFwd_
.
push_back
(
*
fwd_
);
needResetBwd_
=
true
;
}
/**
/**
* reset the backward primitives, can not merge into resetFwd as the grad data
* @brief Base class of MKLDNN softmax Activation,
* would be changing before backward.
* only have mkldnn forward, use cpu implement for backward.
*/
*/
void
resetBwd
(
Argument
&
act
)
{
class
MKLDNNSoftmaxActivation
:
public
MKLDNNActivation
{
if
(
!
needResetBwd_
)
{
typedef
mkldnn
::
softmax_forward
softmax_fwd
;
return
;
}
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" reset mkldnn backward"
;
needResetBwd_
=
false
;
mkldnn
::
algorithm
algo
=
getAlgo
(
this
->
getName
());
float
alpha
=
getBwdAlpha
();
float
beta
=
getBeta
();
grad_
=
MKLDNNMatrix
::
create
(
act
.
grad
,
val_
->
getPrimitiveDesc
());
auto
eng
=
CPUEngine
::
Instance
().
getEngine
();
auto
bwdDesc
=
eltwise_bwd
::
desc
(
algo
,
grad_
->
getMemoryDesc
(),
val_
->
getMemoryDesc
(),
alpha
,
beta
);
auto
bwdPD
=
eltwise_bwd
::
primitive_desc
(
bwdDesc
,
eng
,
*
fwdPD_
);
CHECK
(
inVal_
);
bwd_
.
reset
(
new
eltwise_bwd
(
bwdPD
,
*
inVal_
,
*
grad_
,
*
grad_
));
pipelineBwd_
.
clear
();
pipelineBwd_
.
push_back
(
*
bwd_
);
}
Error
__must_check
forward
(
Argument
&
act
)
{
private:
resetFwd
(
act
);
// for backward
stream_
->
submit
(
pipelineFwd_
);
MatrixPtr
sftMaxSum_
;
return
Error
();
MatrixPtr
sftMaxDot_
;
}
Error
__must_check
backward
(
Argument
&
act
)
{
public:
resetBwd
(
act
);
MKLDNNSoftmaxActivation
()
{}
stream_
->
submit
(
pipelineBwd_
);
~
MKLDNNSoftmaxActivation
()
{}
return
Error
();
virtual
const
std
::
string
&
getName
()
const
=
0
;
}
void
resetFwd
(
Argument
&
act
)
override
;
Error
__must_check
forward
(
Argument
&
act
)
override
;
Error
__must_check
backward
(
Argument
&
act
)
override
;
};
};
}
// namespace paddle
}
// namespace paddle
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
0cc85d79
...
@@ -222,8 +222,8 @@ static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) {
...
@@ -222,8 +222,8 @@ static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) {
}
}
void
testActivation
(
std
::
string
&
actType
,
const
testActDesc
&
pm
)
{
void
testActivation
(
std
::
string
&
actType
,
const
testActDesc
&
pm
)
{
// TODO(TJ):
mkldnn_softmax not implemented, paddle do not have
elu activation
// TODO(TJ):
remove me when paddle support
elu activation
if
(
actType
==
"mkldnn_
softmax"
||
actType
==
"mkldnn_
elu"
)
{
if
(
actType
==
"mkldnn_elu"
)
{
return
;
return
;
}
}
const
std
::
string
compareTypes
[]
=
{
actType
,
actType
.
erase
(
0
,
7
)};
const
std
::
string
compareTypes
[]
=
{
actType
,
actType
.
erase
(
0
,
7
)};
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
0cc85d79
...
@@ -1566,7 +1566,7 @@ class LayerBase(object):
...
@@ -1566,7 +1566,7 @@ class LayerBase(object):
self
.
config
=
g_config
.
model_config
.
layers
.
add
()
self
.
config
=
g_config
.
model_config
.
layers
.
add
()
assert
isinstance
(
self
.
config
,
LayerConfig
)
assert
isinstance
(
self
.
config
,
LayerConfig
)
use_mkldnn
=
bool
(
int
(
g_command_config_args
.
get
(
"use_mkldnn"
,
0
)))
use_mkldnn
=
bool
(
int
(
g_command_config_args
.
get
(
"use_mkldnn"
,
0
)))
mkldnn_acts
=
[
'relu'
,
'tanh'
]
mkldnn_acts
=
[
'relu'
,
'tanh'
,
'softmax'
]
if
use_mkldnn
and
active_type
in
mkldnn_acts
:
if
use_mkldnn
and
active_type
in
mkldnn_acts
:
active_type
=
"mkldnn_"
+
active_type
active_type
=
"mkldnn_"
+
active_type
self
.
config
.
name
=
name
self
.
config
.
name
=
name
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录