Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0be1e09f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0be1e09f
编写于
3月 28, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"fix ci"
上级
5447046a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
183 addition
and
167 deletion
+183
-167
paddle/fluid/operators/sequence_expand_op.cc
paddle/fluid/operators/sequence_expand_op.cc
+2
-3
paddle/fluid/operators/sequence_expand_op.cu
paddle/fluid/operators/sequence_expand_op.cu
+99
-94
paddle/fluid/operators/sequence_expand_op.h
paddle/fluid/operators/sequence_expand_op.h
+73
-57
python/paddle/fluid/tests/unittests/test_sequence_expand.py
python/paddle/fluid/tests/unittests/test_sequence_expand.py
+9
-13
未找到文件。
paddle/fluid/operators/sequence_expand_op.cc
浏览文件 @
0be1e09f
...
...
@@ -84,12 +84,11 @@ class SequenceExpandOp : public framework::OperatorWithKernel {
}
}
out_dims
[
0
]
=
out_first_dim
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
}
else
{
out_dims
[
0
]
=
-
1
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
...
...
paddle/fluid/operators/sequence_expand_op.cu
浏览文件 @
0be1e09f
...
...
@@ -24,123 +24,128 @@ namespace operators {
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
__global__
void
sequence_expand_kernel
(
const
T
*
x_data
,
T
*
out_data
,
const
size_t
*
lod
,
const
size_t
*
out_offset
,
size_t
lod_size
,
size_t
element_len
,
size_t
x_size
)
{
int
bid_x
=
blockIdx
.
x
;
if
(
bid_x
>
lod_size
)
return
;
int
repeats
=
lod
[
bid_x
];
int
offset
=
out_offset
[
bid_x
]
;
for
(
int
tid_y
=
threadIdx
.
y
;
tid_y
<
repeats
;
tid_y
+=
blockDim
.
y
)
{
for
(
int
tid_x
=
threadIdx
.
x
;
tid_x
<
element_len
;
tid_x
+=
blockDim
.
x
)
{
out_data
[(
offset
+
tid_y
)
*
element_len
+
tid_x
]
=
x_data
[
bid_x
*
element_len
+
tid_x
]
;
__global__
void
sequence_expand_kernel
(
const
T
*
x_data
,
const
size_t
*
x_lod
,
const
size_t
*
ref_
lod
,
const
size_t
lod_size
,
/* default=1
,
the instance length*/
const
int
x_item_length
,
T
*
out_data
)
{
constexpr
int
N
=
1024
;
__shared__
int
mem
[
N
];
int
offset
=
0
;
for
(
int
i
=
0
;
i
<
lod_size
;
++
i
)
{
mem
[
i
]
=
offset
;
if
(
i
<
lod_size
-
1
)
{
offset
+=
(
ref_lod
[
i
+
1
]
-
ref_lod
[
i
])
*
(
x_lod
[
i
+
1
]
-
x_lod
[
i
])
;
}
}
}
__syncthreads
();
template
<
typename
T
>
__global__
void
sequence_expand_grad_kernel
(
const
T
*
dout_data
,
T
*
dx_data
,
const
size_t
*
lod
,
const
size_t
*
out_offset
,
size_t
lod_size
,
size_t
element_len
,
size_t
dout_size
,
size_t
dx_size
)
{
// reduce visit memory time.
// dout_shm = [0 - dout_size-1], dx_shm = [dout_size-1, dout_size + dx_size-1]
if
(
blockIdx
.
x
==
0
&&
blockIdx
.
y
==
0
&&
threadIdx
.
x
==
0
&&
threadIdx
.
y
==
0
)
{
printf
(
"lod_size=%ld, element_size=%ld, dout_size=%ld, dx_size=%ld
\n
"
,
lod_size
,
element_len
,
dout_size
,
dx_size
);
}
extern
__shared__
T
shm
[];
T
*
dout_shm
=
shm
;
T
*
dx_shm
=
&
shm
[
dout_size
];
// int idx = threadIdx.x + blockIdx.x * blockDim.x;
for
(
int
idx
=
0
;
idx
<
dout_size
;
++
idx
)
{
if
(
idx
<
dx_size
)
{
dx_shm
[
idx
]
=
0.0
;
}
if
(
idx
<
dout_size
)
{
dout_shm
[
idx
]
=
dout_data
[
idx
];
int
bid
=
blockIdx
.
x
;
if
(
bid
>=
lod_size
-
1
)
return
;
int
x_item_count
=
x_lod
[
bid
+
1
]
-
x_lod
[
bid
];
int
repeats
=
ref_lod
[
bid
+
1
]
-
ref_lod
[
bid
];
int
out_offset
=
mem
[
bid
];
int
x_offset
=
x_lod
[
bid
];
for
(
int
tid_z
=
threadIdx
.
z
;
tid_z
<
repeats
;
tid_z
+=
blockDim
.
z
)
{
for
(
int
tid_y
=
threadIdx
.
y
;
tid_y
<
x_item_count
;
tid_y
+=
blockDim
.
y
)
{
for
(
int
tid_x
=
threadIdx
.
x
;
tid_x
<
x_item_length
;
tid_x
+=
blockDim
.
x
)
{
out_data
[(
out_offset
+
tid_z
*
x_item_count
+
tid_y
)
*
x_item_length
+
tid_x
]
=
x_data
[(
x_offset
+
tid_y
)
*
x_item_length
+
tid_x
];
}
}
}
}
int
bid_x
=
blockIdx
.
x
;
if
(
bid_x
>
lod_size
)
return
;
int
repeats
=
lod
[
bid_x
];
int
offset
=
out_offset
[
bid_x
];
if
(
threadIdx
.
x
==
0
)
{
printf
(
"repeats=%d, offset=%ld
\n
"
,
repeats
,
offset
);
}
for
(
int
tid_y
=
threadIdx
.
y
;
tid_y
<
repeats
;
tid_y
+=
blockDim
.
y
)
{
for
(
int
tid_x
=
threadIdx
.
x
;
tid_x
<
element_len
;
tid_x
+=
blockDim
.
x
)
{
T
val
=
dout_shm
[(
offset
+
tid_y
)
*
element_len
+
tid_x
];
platform
::
CudaAtomicAdd
(
&
dx_shm
[
bid_x
*
element_len
+
tid_x
],
val
);
int
dx_idx
=
bid_x
*
element_len
+
tid_x
;
int
dout_idx
=
(
offset
+
tid_y
)
*
element_len
+
tid_x
;
printf
(
"dx_idx=%d, dout_idx=%d, dx_data=%f, dout_data=%f, val=%f
\n
"
,
dx_idx
,
dout_idx
,
dx_shm
[
dx_idx
],
dout_shm
[
dout_idx
],
val
);
template
<
typename
T
>
__global__
void
sequence_expand_grad_kernel
(
const
T
*
dout_data
,
const
size_t
*
ref_lod
,
const
size_t
*
dx_lod
,
const
size_t
lod_size
,
/* default=1,
the instance length*/
const
int
x_item_length
,
T
*
dx_data
)
{
// TODO(dzhwinter) : too many atomicAdd
// use shared memory to reduce memory visits
constexpr
int
N
=
1024
;
__shared__
int
mem
[
N
];
int
offset
=
0
;
for
(
int
i
=
0
;
i
<
lod_size
;
++
i
)
{
mem
[
i
]
=
offset
;
if
(
i
<
lod_size
-
1
)
{
offset
+=
(
ref_lod
[
i
+
1
]
-
ref_lod
[
i
])
*
(
dx_lod
[
i
+
1
]
-
dx_lod
[
i
]);
}
}
__syncthreads
();
// copy shared memory back to dx
for
(
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
idx
<
dx_size
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dx_data
[
idx
]
=
dx_shm
[
idx
];
int
bid
=
blockIdx
.
x
;
if
(
bid
>=
lod_size
-
1
)
return
;
int
x_item_count
=
dx_lod
[
bid
+
1
]
-
dx_lod
[
bid
];
int
repeats
=
ref_lod
[
bid
+
1
]
-
ref_lod
[
bid
];
int
out_offset
=
mem
[
bid
];
int
x_offset
=
dx_lod
[
bid
];
for
(
int
tid_z
=
threadIdx
.
z
;
tid_z
<
repeats
;
tid_z
+=
blockDim
.
z
)
{
for
(
int
tid_y
=
threadIdx
.
y
;
tid_y
<
x_item_count
;
tid_y
+=
blockDim
.
y
)
{
for
(
int
tid_x
=
threadIdx
.
x
;
tid_x
<
x_item_length
;
tid_x
+=
blockDim
.
x
)
{
platform
::
CudaAtomicAdd
(
&
dx_data
[(
x_offset
+
tid_y
)
*
x_item_length
+
tid_x
],
dout_data
[(
out_offset
+
tid_z
*
x_item_count
+
tid_y
)
*
x_item_length
+
tid_x
]);
}
}
}
}
template
<
typename
T
>
struct
SequenceExpandFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
LoDTensor
&
x
,
LoDTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
auto
lod
=
out
->
lod
().
back
();
framework
::
Vector
<
size_t
>
out_lod
;
for
(
size_t
i
=
0
;
i
<
lod
.
size
()
-
1
;
++
i
)
{
out_lod
.
push_back
(
lod
[
i
+
1
]
-
lod
[
i
])
;
}
int
thread_
x
=
std
::
max
(
static_cast
<
int
>
(
element_len
),
32
);
int
block_x
=
static_cast
<
int
>
(
out
_lod
.
size
());
dim3
block_size
(
thread_x
,
1024
/
thread_x
);
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
LoDTensor
&
x
,
const
framework
::
Vector
<
size_t
>&
x_lod
,
/*expand source lod*/
const
framework
::
Vector
<
size_t
>&
ref_lod
,
/*expand referenced lod*/
LoDTensor
*
out
)
{
int
x_item_length
=
1
;
x_item_length
=
x
.
numel
()
/
x
.
dims
()[
0
];
VLOG
(
0
)
<<
"x_item_length"
<<
x_item_length
;
int
thread_x
=
std
::
max
(
static_cast
<
int
>
(
ref_lod
.
size
()),
32
);
int
thread_y
=
std
::
max
(
1024
/
thread_x
,
16
);
int
thread_
z
=
std
::
min
(
1024
/
thread_x
/
thread_y
,
16
);
int
block_x
=
static_cast
<
int
>
(
ref
_lod
.
size
());
dim3
block_size
(
thread_x
,
thread_y
,
thread_z
);
dim3
grid_size
(
block_x
,
1
);
sequence_expand_kernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
x
.
data
<
T
>
(),
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
out_lod
.
CUDAData
(
context
.
GetPlace
()),
lod
.
CUDAData
(
context
.
GetPlace
())
,
out
_lod
.
size
(),
element_len
,
framework
::
product
(
x_dims
));
x
.
data
<
T
>
(),
x_lod
.
CUDAData
(
context
.
GetPlace
()),
ref_lod
.
CUDAData
(
context
.
GetPlace
()),
x_lod
.
size
(),
x_item_length
,
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()
));
}
};
template
<
typename
T
>
struct
SequenceExpandGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
LoDTensor
&
x
,
const
LoDTensor
&
out
,
const
LoDTensor
&
dout
,
LoDTensor
*
dx
)
{
auto
x_dims
=
x
.
dims
();
size_t
element_len
=
framework
::
product
(
x_dims
)
/
x_dims
[
0
];
auto
lod
=
out
.
lod
().
back
();
framework
::
Vector
<
size_t
>
out_lod
;
for
(
size_t
i
=
0
;
i
<
lod
.
size
()
-
1
;
++
i
)
{
out_lod
.
push_back
(
lod
[
i
+
1
]
-
lod
[
i
]);
}
size_t
dout_size
=
framework
::
product
(
dout
.
dims
());
size_t
dx_size
=
framework
::
product
(
dx
->
dims
());
int
thread_x
=
std
::
max
(
static_cast
<
int
>
(
element_len
),
32
);
dim3
block_size
(
thread_x
,
1024
/
thread_x
);
int
block_x
=
static_cast
<
int
>
(
out_lod
.
size
());
const
LoDTensor
&
dout
,
const
framework
::
Vector
<
size_t
>&
x_lod
,
/*expand source lod*/
const
framework
::
Vector
<
size_t
>&
ref_lod
,
/*expand based lod*/
LoDTensor
*
dx
)
{
int
x_item_length
=
1
;
x_item_length
=
framework
::
product
(
dx
->
dims
())
/
dx
->
dims
()[
0
];
int
thread_x
=
std
::
max
(
static_cast
<
int
>
(
ref_lod
.
size
()),
32
);
int
thread_y
=
std
::
max
(
1024
/
thread_x
,
16
);
int
thread_z
=
std
::
min
(
1024
/
thread_x
/
thread_y
,
16
);
int
block_x
=
static_cast
<
int
>
(
ref_lod
.
size
());
dim3
block_size
(
thread_x
,
thread_y
,
thread_z
);
dim3
grid_size
(
block_x
,
1
);
sequence_expand_grad_kernel
<<<
grid_size
,
block_size
,
(
dout_size
+
dx_size
)
*
sizeof
(
T
),
context
.
stream
()
>>>
(
dout
.
data
<
T
>
(),
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
out_lod
.
CUDAData
(
context
.
GetPlace
()),
lod
.
CUDAData
(
context
.
GetPlace
()),
out_lod
.
size
(),
element_len
,
dout_size
,
dx_size
);
sequence_expand_grad_kernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
dout
.
data
<
T
>
(),
ref_lod
.
CUDAData
(
context
.
GetPlace
()),
x_lod
.
CUDAData
(
context
.
GetPlace
()),
ref_lod
.
size
(),
x_item_length
,
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
()));
}
};
...
...
paddle/fluid/operators/sequence_expand_op.h
浏览文件 @
0be1e09f
...
...
@@ -13,8 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <numeric> // std::i
to
a
#include <numeric> // std::i
ot
a
#include <glog/logging.h>
#include <sstream>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/math/math_function.h"
...
...
@@ -29,40 +31,42 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template
<
typename
DeviceContext
,
typename
T
>
struct
SequenceExpandFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
LoDTensor
&
x
,
LoDTensor
*
out
);
void
operator
()(
const
DeviceContext
&
ctx
,
const
LoDTensor
&
x
,
const
framework
::
Vector
<
size_t
>&
x_lod
,
/*expand source lod*/
const
framework
::
Vector
<
size_t
>&
ref_lod
,
/*expand referenced lod*/
LoDTensor
*
out
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
SequenceExpandGradFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
LoDTensor
&
x
,
const
LoDTensor
&
out
,
const
LoDTensor
&
dout
,
LoDTensor
*
dx
);
void
operator
()(
const
DeviceContext
&
ctx
,
const
LoDTensor
&
dout
,
const
framework
::
Vector
<
size_t
>&
x_lod
,
/*expand source lod*/
const
framework
::
Vector
<
size_t
>&
ref_lod
,
/*expand referenced lod*/
LoDTensor
*
dx
);
};
template
<
typename
T
>
struct
SequenceExpandFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
LoDTensor
&
x
,
LoDTensor
*
out
)
{
auto
&
out_lod
=
out
->
lod
()[
0
];
framework
::
Vector
<
size_t
>
x_lod
;
if
(
x
.
lod
()
==
1
)
{
x_lod
=
x
.
lod
()[
0
];
}
else
{
x_lod
.
reserve
(
out_lod
.
size
());
std
::
itoa
(
x_lod
.
begin
(),
x_lod
.
end
(),
0
);
// fill 0 ~ out_lod.size()-1
}
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
LoDTensor
&
x
,
const
framework
::
Vector
<
size_t
>&
x_lod
,
/*expand source lod*/
const
framework
::
Vector
<
size_t
>&
ref_lod
,
/*expand referenced lod*/
LoDTensor
*
out
)
{
int
out_offset
=
0
;
auto
&
eigen_place
=
*
context
.
eigen_device
();
for
(
size_t
i
=
1
;
i
<
out
_lod
.
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
]
[
i
-
1
];
for
(
size_t
i
=
1
;
i
<
ref
_lod
.
size
();
++
i
)
{
int
repeat_num
=
ref_lod
[
i
]
-
ref_lod
[
i
-
1
];
int
x_start
=
x_lod
[
i
-
1
];
int
x_end
=
x_lod
[
i
];
int
x_seq_len
=
x_end
-
x_start
;
if
(
repeat_num
>
0
)
{
auto
x_sub_tensor
=
x
->
Slice
(
x_start
,
x_end
);
auto
x_sub_tensor
=
x
.
Slice
(
x_start
,
x_end
);
x_sub_tensor
.
Resize
({
1
,
x_sub_tensor
.
numel
()});
int
out_start
=
out_offset
;
if
(
x_lod
.
size
()
==
1
)
{
out_start
=
out
_lod
[
0
][
out_offset
];
if
(
out
->
lod
()
.
size
()
==
1
)
{
out_start
=
out
->
lod
()
[
0
][
out_offset
];
}
auto
out_sub_tensor
=
out
->
Slice
(
out_start
,
out_start
+
x_seq_len
*
repeat_num
);
...
...
@@ -71,6 +75,7 @@ struct SequenceExpandFunctor<platform::CPUDeviceContext, T> {
EigenMatrix
<
T
>::
From
(
x_sub_tensor
)
.
broadcast
(
Eigen
::
array
<
int
,
2
>
({{
repeat_num
,
1
}}));
}
out_offset
+=
repeat_num
;
}
}
};
...
...
@@ -96,13 +101,10 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
return
;
}
auto
&
out_lod
=
*
out
->
mutable_lod
();
// x lod level is at most 1.
if
(
x_lod
.
size
()
==
0
)
{
out_lod
=
y_lod
[
ref_level
];
}
else
if
(
x_lod
.
size
()
==
1
)
{
out_lod
.
resize
(
1
);
out_lod
[
0
]
=
{
0
};
framework
::
Vector
<
size_t
>
out_lod
;
if
(
x_lod
.
size
()
==
1
)
{
out_lod
.
push_back
(
0
);
int
out_offset
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
...
...
@@ -110,14 +112,25 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
int
x_end
=
x_lod
[
0
][
i
];
int
x_seq_len
=
x_end
-
x_start
;
for
(
int
j
=
0
;
j
<
repeat_num
;
++
j
)
{
out_lod
[
0
].
push_back
(
out_lod
[
0
]
.
back
()
+
x_seq_len
);
out_lod
.
push_back
(
out_lod
.
back
()
+
x_seq_len
);
out_offset
++
;
}
}
// write lod to out if x has lod
auto
&
ref_lod
=
*
out
->
mutable_lod
();
ref_lod
[
0
]
=
out_lod
;
}
framework
::
Vector
<
size_t
>
ref_x_lod
;
if
(
x
->
lod
().
size
()
==
1
)
{
ref_x_lod
=
x
->
lod
()[
0
];
}
else
{
// x_lod doesn't has lod, use fake x lod, level = 0
ref_x_lod
.
resize
(
x
->
dims
()[
0
]
+
1
);
std
::
iota
(
ref_x_lod
.
begin
(),
ref_x_lod
.
end
(),
0
);
}
SequenceExpandFunctor
<
DeviceContext
,
T
>
functor
;
functor
(
context
.
template
device_context
<
DeviceContext
>(),
*
x
,
out
);
functor
(
context
.
template
device_context
<
DeviceContext
>(),
*
x
,
ref_x_lod
,
y_lod
[
ref_level
],
out
);
}
};
...
...
@@ -135,32 +148,29 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
* */
template
<
typename
T
>
struct
SequenceExpandGradFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
LoDTensor
&
x
,
const
LoDTensor
&
out
,
const
LoDTensor
&
dout
,
LoDTensor
*
dx
)
{
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
g_x
,
static_cast
<
T
>
(
0
));
int
g_out_offset
=
0
;
for
(
size_t
i
=
1
;
i
<
y_lod
[
ref_level
].
size
();
++
i
)
{
int
repeat_num
=
y_lod
[
ref_level
][
i
]
-
y_lod
[
ref_level
][
i
-
1
];
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
LoDTensor
&
dout
,
const
framework
::
Vector
<
size_t
>&
x_lod
,
/*expand source lod*/
const
framework
::
Vector
<
size_t
>&
ref_lod
,
/*expand referenced lod*/
LoDTensor
*
dx
)
{
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
set_zero
;
set_zero
(
context
,
dx
,
static_cast
<
T
>
(
0
));
int
dout_offset
=
0
;
for
(
size_t
i
=
1
;
i
<
ref_lod
.
size
();
++
i
)
{
int
repeat_num
=
ref_lod
[
i
]
-
ref_lod
[
i
-
1
];
if
(
repeat_num
>
0
)
{
int
x_start
=
i
-
1
;
int
x_end
=
i
;
if
(
x_lod
.
size
()
==
1
)
{
x_start
=
x_lod
[
0
][
i
-
1
];
x_end
=
x_lod
[
0
][
i
];
}
int
x_start
=
x_lod
[
i
-
1
];
int
x_end
=
x_lod
[
i
];
int
x_seq_len
=
x_end
-
x_start
;
auto
g_x_sub
=
g_
x
->
Slice
(
x_start
,
x_end
);
g_x_sub
.
Resize
(
flatten_to_1d
(
g_
x_sub
.
dims
()));
int
g_out_end
=
g_
out_offset
+
repeat_num
*
x_seq_len
;
auto
g_out_sub
=
g_out
->
Slice
(
g_out_offset
,
g_
out_end
);
g_out_sub
.
Resize
({
repeat_num
,
g_
x_sub
.
dims
()[
0
]});
math
::
ColwiseSum
<
DeviceContext
,
T
>
col_sum
;
col_sum
(
dev_ctx
,
g_out_sub
,
&
g_
x_sub
);
g_
out_offset
+=
repeat_num
*
x_seq_len
;
auto
dx_sub
=
d
x
->
Slice
(
x_start
,
x_end
);
dx_sub
.
Resize
(
flatten_to_1d
(
d
x_sub
.
dims
()));
int
dout_end
=
d
out_offset
+
repeat_num
*
x_seq_len
;
auto
dout_sub
=
dout
.
Slice
(
dout_offset
,
d
out_end
);
dout_sub
.
Resize
({
repeat_num
,
d
x_sub
.
dims
()[
0
]});
math
::
ColwiseSum
<
platform
::
CPU
DeviceContext
,
T
>
col_sum
;
col_sum
(
context
,
dout_sub
,
&
d
x_sub
);
d
out_offset
+=
repeat_num
*
x_seq_len
;
}
}
}
...
...
@@ -179,20 +189,26 @@ class SequenceExpandGradKernel : public framework::OpKernel<T> {
g_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
g_x
->
set_lod
(
x
->
lod
());
auto
&
x_lod
=
x
->
lod
();
auto
&
y_lod
=
y
->
lod
();
if
(
ref_level
==
-
1
)
ref_level
=
y_lod
.
size
()
-
1
;
// just copy the gradient
if
(
y_lod
[
ref_level
].
size
()
<=
1
)
{
framework
::
TensorCopy
(
*
g_out
,
context
.
GetPlace
(),
g_x
);
return
;
}
framework
::
Vector
<
size_t
>
ref_x_lod
;
framework
::
Vector
<
size_t
>
ref_lod
=
y_lod
[
ref_level
];
if
(
x
->
lod
().
size
()
==
1
)
{
ref_x_lod
=
x
->
lod
()[
0
];
}
else
{
// x_lod doesn't has lod, use fake x lod, level = 0
ref_x_lod
.
resize
(
x
->
dims
()[
0
]
+
1
);
std
::
iota
(
ref_x_lod
.
begin
(),
ref_x_lod
.
end
(),
0
);
}
SequenceExpandGradFunctor
<
DeviceContext
,
T
>
functor
;
functor
(
context
.
template
device_context
<
DeviceContext
>(),
*
x
,
*
y
,
*
g_out
,
g_x
);
functor
(
context
.
template
device_context
<
DeviceContext
>(),
*
g_out
,
ref_x_lod
,
ref_lod
,
g_x
);
}
};
...
...
python/paddle/fluid/tests/unittests/test_sequence_expand.py
浏览文件 @
0be1e09f
...
...
@@ -19,14 +19,8 @@ from op_test import OpTest
class
TestSequenceExpand
(
OpTest
):
def
set_data
(
self
):
x
=
[
i
/
10.0
for
i
in
range
(
3
)]
y
=
[
i
/
10.0
for
i
in
range
(
8
)]
x_data
=
np
.
array
(
x
).
reshape
(
3
,
1
).
astype
(
'float32'
)
y_data
=
np
.
array
(
y
).
reshape
(
8
,
1
).
astype
(
'float32'
)
print
(
x_data
)
print
(
y_data
)
# x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
# y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
x_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
1
]).
astype
(
'float32'
)
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
8
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
1
,
4
,
8
]]
self
.
inputs
=
{
'X'
:
x_data
,
'Y'
:
(
y_data
,
y_lod
)}
...
...
@@ -53,8 +47,10 @@ class TestSequenceExpand(OpTest):
x_len
=
x_idx
[
i
]
-
x_idx
[
i
-
1
]
if
repeat_num
>
0
:
x_sub
=
x_data
[
x_idx
[
i
-
1
]:
x_idx
[
i
],
:]
x_sub
=
np
.
repeat
(
x_sub
,
repeat_num
,
axis
=
0
)
out
=
np
.
vstack
((
out
,
x_sub
))
stacked_x_sub
=
x_sub
for
r
in
range
(
repeat_num
-
1
):
stacked_x_sub
=
np
.
vstack
((
stacked_x_sub
,
x_sub
))
out
=
np
.
vstack
((
out
,
stacked_x_sub
))
if
x_lod
is
not
None
:
for
j
in
xrange
(
repeat_num
):
out_lod
[
0
].
append
(
out_lod
[
0
][
-
1
]
+
x_len
)
...
...
@@ -107,11 +103,11 @@ class TestSequenceExpandCase3(TestSequenceExpand):
class
TestSequenceExpandCase4
(
TestSequenceExpand
):
def
set_data
(
self
):
data
=
[
0.1
,
0.3
,
0.2
,
0.15
,
0.25
,
0.2
,
0.15
,
0.25
,
0.1
,
0.3
]
data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
5
*
2
,
1
])
x_data
=
np
.
array
(
data
).
reshape
([
5
,
2
]).
astype
(
'float32'
)
x_lod
=
[[
0
,
2
,
5
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
1
,
2
],
[
0
,
1
,
2
]]
y_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
1
]).
astype
(
'float32'
)
y_lod
=
[[
0
,
1
,
3
],
[
0
,
1
,
3
]]
self
.
inputs
=
{
'X'
:
(
x_data
,
x_lod
),
'Y'
:
(
y_data
,
y_lod
)}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录