Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0bb999b6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0bb999b6
编写于
12月 29, 2022
作者:
W
Wang Bojun
提交者:
GitHub
12月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fused_attention_op paratmers stop grad support (#49351)
* fusedAttenGrad_noGrad * code style fix * add ut * remove unnecessary log
上级
1c7ae954
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
375 addition
and
26 deletion
+375
-26
paddle/fluid/operators/fused/fused_attention_op.cc
paddle/fluid/operators/fused/fused_attention_op.cc
+45
-22
paddle/fluid/operators/fused/fused_attention_op.cu
paddle/fluid/operators/fused/fused_attention_op.cu
+13
-4
python/paddle/fluid/tests/unittests/test_fused_attention_op.py
...n/paddle/fluid/tests/unittests/test_fused_attention_op.py
+317
-0
未找到文件。
paddle/fluid/operators/fused/fused_attention_op.cc
浏览文件 @
0bb999b6
...
...
@@ -520,31 +520,50 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearBias"
),
ctx
->
GetInputDim
(
"OutLinearBias"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearW"
),
ctx
->
GetInputDim
(
"OutLinearW"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVW"
),
ctx
->
GetInputDim
(
"QKVW"
));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"OutLinearW"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearW"
),
ctx
->
GetInputDim
(
"OutLinearW"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"QKVW"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVW"
),
ctx
->
GetInputDim
(
"QKVW"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"QKVBias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVBias"
),
ctx
->
GetInputDim
(
"QKVBias"
));
}
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"pre_layer_norm"
)
==
true
)
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"LnOut"
),
ctx
->
GetInputDim
(
"LnOut"
));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"LnOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"LnOut"
),
ctx
->
GetInputDim
(
"LnOut"
));
}
}
else
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BiasDropoutResidualOut"
),
ctx
->
GetInputDim
(
"BiasDropoutResidualOut"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"FMHAOut"
),
ctx
->
GetInputDim
(
"FMHAOut"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKTVOut"
),
ctx
->
GetInputDim
(
"QKTVOut"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"TransposeOut2"
),
ctx
->
GetInputDim
(
"TransposeOut2"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKOut"
),
ctx
->
GetInputDim
(
"QKOut"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"SoftmaxOut"
),
ctx
->
GetInputDim
(
"SoftmaxOut"
));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"BiasDropoutResidualOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BiasDropoutResidualOut"
),
ctx
->
GetInputDim
(
"BiasDropoutResidualOut"
));
}
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"FMHAOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"FMHAOut"
),
ctx
->
GetInputDim
(
"FMHAOut"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"QKTVOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKTVOut"
),
ctx
->
GetInputDim
(
"QKTVOut"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"TransposeOut2"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"TransposeOut2"
),
ctx
->
GetInputDim
(
"TransposeOut2"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"QKOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKOut"
),
ctx
->
GetInputDim
(
"QKOut"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"SoftmaxOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"SoftmaxOut"
),
ctx
->
GetInputDim
(
"SoftmaxOut"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"AttnDropoutOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"AttnDropoutOut"
),
ctx
->
GetInputDim
(
"AttnDropoutOut"
));
...
...
@@ -554,14 +573,18 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"SrcMaskOut"
),
ctx
->
GetInputDim
(
"SrcMaskOut"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVOut"
),
ctx
->
GetInputDim
(
"QKVOut"
));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"QKVOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVOut"
),
ctx
->
GetInputDim
(
"QKVOut"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"QKVBiasOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"QKVBiasOut"
),
ctx
->
GetInputDim
(
"QKVBiasOut"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearOut"
),
ctx
->
GetInputDim
(
"OutLinearOut"
));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"OutLinearOut"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"OutLinearOut"
),
ctx
->
GetInputDim
(
"OutLinearOut"
));
}
}
protected:
...
...
paddle/fluid/operators/fused/fused_attention_op.cu
浏览文件 @
0bb999b6
...
...
@@ -514,15 +514,24 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto
*
d_ln_2_bias
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"Ln2Bias"
));
auto
*
d_qkv_weight_data
=
dev_ctx
.
template
Alloc
<
T
>(
d_qkv_weight
,
d_qkv_weight
->
numel
()
*
sizeof
(
T
));
auto
*
d_qkv_weight_data
=
(
d_qkv_weight
==
nullptr
)
?
nullptr
:
dev_ctx
.
template
Alloc
<
T
>(
d_qkv_weight
,
d_qkv_weight
->
numel
()
*
sizeof
(
T
));
auto
*
d_qkv_bias_data
=
(
d_qkv_bias
==
nullptr
)
?
nullptr
:
dev_ctx
.
template
Alloc
<
T
>(
d_qkv_bias
,
d_qkv_bias
->
numel
()
*
sizeof
(
T
));
auto
*
d_out_linear_weight_data
=
dev_ctx
.
template
Alloc
<
T
>(
d_out_linear_weight
,
d_out_linear_weight
->
numel
()
*
sizeof
(
T
));
auto
*
d_out_linear_weight_data
=
(
d_out_linear_weight
==
nullptr
)
?
nullptr
:
dev_ctx
.
template
Alloc
<
T
>(
d_out_linear_weight
,
d_out_linear_weight
->
numel
()
*
sizeof
(
T
));
auto
*
d_out_linear_bias_data
=
(
d_out_linear_bias
==
nullptr
)
?
nullptr
...
...
python/paddle/fluid/tests/unittests/test_fused_attention_op.py
浏览文件 @
0bb999b6
...
...
@@ -390,5 +390,322 @@ class TestFusedAttentionOpCacheKV(TestFusedAttentionOp):
)
class
TestFusedAttentionOpParamStopGradient
(
OpTest
):
def
setUp
(
self
):
self
.
config
()
self
.
generate_input_data
()
self
.
rtol
=
1e-5
# FIXME(limin29): Because there is a problem with the test precision
# on A100, atol is temporarily set to 1e-2, and it will be
# changed back after the precision problem is solved.
self
.
atol
=
1e-2
# make sure local development precision
if
"V100"
in
paddle
.
device
.
cuda
.
get_device_name
():
self
.
atol
=
1e-4
if
self
.
x_type
is
np
.
float16
:
self
.
atol
=
1e-1
paddle
.
set_default_dtype
(
self
.
x_type
)
self
.
__class__
.
op_type
=
"fused_attention"
# use autograd to check grad in this unittest.
self
.
__class__
.
no_need_check_grad
=
True
self
.
q_proj
=
Linear
(
self
.
embed_dim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
,
)
self
.
k_proj
=
Linear
(
self
.
kdim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
,
)
self
.
v_proj
=
Linear
(
self
.
vdim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
,
)
self
.
out_proj
=
Linear
(
self
.
embed_dim
,
self
.
embed_dim
,
self
.
weight_attr
,
bias_attr
=
self
.
bias_attr
,
)
paddle
.
set_default_dtype
(
np
.
float32
)
self
.
norm1
=
LayerNorm
(
self
.
embed_dim
)
self
.
norm2
=
LayerNorm
(
self
.
embed_dim
)
paddle
.
set_default_dtype
(
self
.
x_type
)
self
.
dropout
=
Dropout
(
self
.
dropout_prob
,
mode
=
"upscale_in_train"
)
def
config
(
self
):
self
.
x_type
=
np
.
float32
self
.
attn_mask_type
=
np
.
float64
self
.
pre_layer_norm
=
False
self
.
has_attn_mask
=
True
self
.
has_cache_kv
=
False
self
.
training
=
True
self
.
batch_size
=
8
self
.
query_length
=
128
self
.
cache_length
=
128
self
.
head_dim
=
64
self
.
num_heads
=
16
self
.
embed_dim
=
self
.
head_dim
*
self
.
num_heads
self
.
dropout_prob
=
0.0
self
.
attn_dropout_prob
=
0.0
self
.
weight_attr
=
None
self
.
bias_attr
=
None
self
.
kdim
,
self
.
vdim
=
self
.
embed_dim
,
self
.
embed_dim
self
.
key_length
,
self
.
value_length
=
(
self
.
query_length
,
self
.
query_length
,
)
def
generate_input_data
(
self
):
self
.
query
=
np
.
random
.
rand
(
self
.
batch_size
,
self
.
query_length
,
self
.
embed_dim
).
astype
(
self
.
x_type
)
out_seq_len
=
self
.
key_length
if
self
.
has_cache_kv
:
assert
self
.
training
is
False
,
ValueError
(
'cache_kv can only used in inference'
)
self
.
cache_kv
=
np
.
random
.
rand
(
2
,
self
.
batch_size
,
self
.
num_heads
,
self
.
cache_length
,
self
.
head_dim
,
).
astype
(
self
.
x_type
)
out_seq_len
+=
self
.
cache_length
else
:
self
.
cache_kv
=
None
if
self
.
has_attn_mask
:
# [B, n_head, seq_len, out_seq_len]
self
.
attn_mask
=
np
.
ones
(
(
self
.
batch_size
,
self
.
num_heads
,
self
.
query_length
,
out_seq_len
,
),
dtype
=
self
.
attn_mask_type
,
)
if
self
.
attn_mask_type
==
np
.
int64
:
self
.
attn_mask
=
np
.
tril
(
self
.
attn_mask
)
elif
self
.
attn_mask_type
==
np
.
float64
:
self
.
attn_mask
=
(
np
.
tril
(
self
.
attn_mask
)
-
1.0
)
*
1e9
else
:
raise
ValueError
(
"'attn_mask_type' should be 'int64' or 'float64'."
)
else
:
self
.
attn_mask
=
None
self
.
key
,
self
.
value
=
self
.
query
,
self
.
query
self
.
dout
=
np
.
random
.
random
(
(
self
.
batch_size
,
self
.
query_length
,
self
.
embed_dim
)
).
astype
(
self
.
x_type
)
def
GetBaselineOut
(
self
):
paddle
.
disable_static
(
place
=
paddle
.
CUDAPlace
(
0
))
tensor_query
=
paddle
.
to_tensor
(
self
.
query
,
stop_gradient
=
False
)
cache_kv
=
None
if
self
.
has_cache_kv
:
cache_kv
=
paddle
.
to_tensor
(
self
.
cache_kv
,
stop_gradient
=
False
)
if
self
.
has_attn_mask
:
attn_mask
=
paddle
.
to_tensor
(
self
.
attn_mask
,
stop_gradient
=
False
)
else
:
attn_mask
=
None
residual
=
tensor_query
ln1_out
=
tensor_query
if
self
.
pre_layer_norm
:
ln1_out
=
self
.
norm1
(
tensor_query
)
q
=
self
.
q_proj
(
ln1_out
)
q
=
tensor
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
q_out
=
tensor
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
k
=
self
.
k_proj
(
ln1_out
)
v
=
self
.
v_proj
(
ln1_out
)
k
=
tensor
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
k_out
=
tensor
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
v
=
tensor
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
v_out
=
tensor
.
transpose
(
x
=
v
,
perm
=
[
0
,
2
,
1
,
3
])
if
self
.
has_cache_kv
:
# [1, B, n_head, cache_seq_len, head_dim]
cache_k
,
cache_v
=
paddle
.
split
(
cache_kv
,
2
)
cache_k
=
paddle
.
squeeze
(
cache_k
,
axis
=
0
)
cache_v
=
paddle
.
squeeze
(
cache_v
,
axis
=
0
)
# [B, n_head, cache_seq_len + seq_len, head_dim]
# out_seq_len = cache_seq_len + seq_len
k_out
=
paddle
.
concat
([
cache_k
,
k_out
],
axis
=-
2
)
v_out
=
paddle
.
concat
([
cache_v
,
v_out
],
axis
=-
2
)
# [B, n_head, seq_len, head_dim] * [B, n_head, out_seq_len, head_dim]
# --> [B, n_head, seq_len, out_seq_len]
qk_out
=
paddle
.
matmul
(
x
=
q_out
,
y
=
k_out
,
transpose_y
=
True
)
qk_out
=
paddle
.
scale
(
qk_out
,
scale
=
self
.
head_dim
**-
0.5
)
if
attn_mask
is
not
None
:
attn_mask
=
_convert_attention_mask
(
attn_mask
,
qk_out
.
dtype
)
attn_mask_out
=
qk_out
+
attn_mask
softmax_out
=
F
.
softmax
(
attn_mask_out
)
else
:
softmax_out
=
F
.
softmax
(
qk_out
)
if
self
.
dropout_prob
:
dropout_out
=
F
.
dropout
(
softmax_out
,
self
.
dropout_prob
,
training
=
self
.
training
,
mode
=
"upscale_in_train"
,
)
# [B, n_head, seq_len, out_seq_len] * [B, n_head, out_seq_len, head_dim]
# --> [B, n_head, seq_len, head_dim]
qktv_out
=
tensor
.
matmul
(
dropout_out
,
v_out
)
else
:
qktv_out
=
tensor
.
matmul
(
softmax_out
,
v_out
)
fmha_out
=
tensor
.
transpose
(
qktv_out
,
perm
=
[
0
,
2
,
1
,
3
])
out_linear_in
=
tensor
.
reshape
(
x
=
fmha_out
,
shape
=
[
0
,
0
,
fmha_out
.
shape
[
2
]
*
fmha_out
.
shape
[
3
]]
)
out
=
self
.
out_proj
(
out_linear_in
)
residual_out
=
residual
+
self
.
dropout
(
out
)
if
not
self
.
pre_layer_norm
:
final_out
=
self
.
norm1
(
residual_out
)
else
:
final_out
=
residual_out
if
self
.
has_cache_kv
:
return
final_out
paddle
.
autograd
.
backward
(
[
final_out
],
[
paddle
.
to_tensor
(
self
.
dout
)],
retain_graph
=
True
)
return
final_out
,
tensor_query
.
grad
def
GetFusedAttentionOut
(
self
):
paddle
.
disable_static
(
place
=
paddle
.
CUDAPlace
(
0
))
q_proj_weight
=
paddle
.
to_tensor
(
self
.
q_proj
.
weight
,
stop_gradient
=
False
)
k_proj_weight
=
paddle
.
to_tensor
(
self
.
k_proj
.
weight
,
stop_gradient
=
False
)
v_proj_weight
=
paddle
.
to_tensor
(
self
.
v_proj
.
weight
,
stop_gradient
=
False
)
out_linear_weight
=
paddle
.
to_tensor
(
self
.
out_proj
.
weight
,
stop_gradient
=
False
)
if
self
.
bias_attr
is
False
:
qkv_bias_tensor
=
None
out_linear_bias
=
None
else
:
q_proj_bias
=
paddle
.
to_tensor
(
self
.
q_proj
.
bias
,
stop_gradient
=
False
)
k_proj_bias
=
paddle
.
to_tensor
(
self
.
k_proj
.
bias
,
stop_gradient
=
False
)
v_proj_bias
=
paddle
.
to_tensor
(
self
.
v_proj
.
bias
,
stop_gradient
=
False
)
qkv_bias
=
np
.
concatenate
(
(
q_proj_bias
.
numpy
(),
k_proj_bias
.
numpy
(),
v_proj_bias
.
numpy
())
)
qkv_bias
=
qkv_bias
.
reshape
((
3
,
self
.
num_heads
,
self
.
head_dim
))
qkv_bias_tensor
=
paddle
.
to_tensor
(
qkv_bias
,
stop_gradient
=
False
)
out_linear_bias
=
paddle
.
to_tensor
(
self
.
out_proj
.
bias
,
stop_gradient
=
False
)
ln1_scale
=
paddle
.
to_tensor
(
self
.
norm1
.
weight
,
stop_gradient
=
False
)
ln1_bias
=
paddle
.
to_tensor
(
self
.
norm1
.
bias
,
stop_gradient
=
False
)
ln2_scale
=
paddle
.
to_tensor
(
self
.
norm2
.
weight
,
stop_gradient
=
False
)
ln2_bias
=
paddle
.
to_tensor
(
self
.
norm2
.
bias
,
stop_gradient
=
False
)
q_proj_weight
=
q_proj_weight
.
numpy
().
transpose
((
1
,
0
))
k_proj_weight
=
k_proj_weight
.
numpy
().
transpose
((
1
,
0
))
v_proj_weight
=
v_proj_weight
.
numpy
().
transpose
((
1
,
0
))
qkv_weight
=
np
.
concatenate
(
(
q_proj_weight
,
k_proj_weight
,
v_proj_weight
)
)
qkv_weight
=
qkv_weight
.
reshape
(
(
3
,
self
.
num_heads
,
self
.
head_dim
,
self
.
embed_dim
)
)
x
=
paddle
.
to_tensor
(
self
.
query
,
stop_gradient
=
False
)
cache_kv
=
None
if
self
.
has_cache_kv
:
cache_kv
=
paddle
.
to_tensor
(
self
.
cache_kv
,
stop_gradient
=
False
)
if
self
.
has_attn_mask
:
attn_mask
=
paddle
.
to_tensor
(
self
.
attn_mask
,
stop_gradient
=
False
)
else
:
attn_mask
=
None
qkv_weight_tensor
=
paddle
.
to_tensor
(
qkv_weight
,
stop_gradient
=
False
)
epsilon
=
1e-05
ln2_epsilon
=
1e-05
if
attn_mask
is
not
None
:
attn_mask
=
_convert_attention_mask
(
attn_mask
,
x
.
dtype
)
qkv_weight_tensor
.
stop_gradient
=
True
out_linear_weight
.
stop_gradient
=
True
ln1_scale
.
stop_gradient
=
True
ln1_bias
.
stop_gradient
=
True
ln2_scale
.
stop_gradient
=
True
ln2_bias
.
stop_gradient
=
True
qkv_bias_tensor
.
stop_gradient
=
True
out_linear_bias
.
stop_gradient
=
True
final_out
=
incubate_f
.
fused_multi_head_attention
(
x
,
qkv_weight_tensor
,
out_linear_weight
,
self
.
pre_layer_norm
,
ln1_scale
,
ln1_bias
,
ln2_scale
,
ln2_bias
,
epsilon
,
qkv_bias_tensor
,
out_linear_bias
,
cache_kv
,
attn_mask
,
self
.
dropout_prob
,
self
.
attn_dropout_prob
,
ln2_epsilon
,
)
if
self
.
has_cache_kv
:
return
final_out
[
0
],
final_out
[
1
]
paddle
.
autograd
.
backward
(
[
final_out
],
[
paddle
.
to_tensor
(
self
.
dout
)],
retain_graph
=
True
)
return
final_out
,
x
.
grad
def
test_fused_attention_op
(
self
):
final_out_ref
,
x_grad_ref
=
self
.
GetBaselineOut
()
final_out
,
x_grad
=
self
.
GetFusedAttentionOut
()
np
.
testing
.
assert_allclose
(
final_out_ref
,
final_out
.
numpy
(),
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
np
.
testing
.
assert_allclose
(
x_grad_ref
,
x_grad
.
numpy
(),
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录