Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0b20b76e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0b20b76e
编写于
7月 12, 2021
作者:
Q
Qi Li
提交者:
GitHub
7月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add NPU ops of stack and unstack, test=develop (#34084)
上级
2dde0eb0
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
404 addition
and
120 deletion
+404
-120
paddle/fluid/operators/stack_op_npu.cc
paddle/fluid/operators/stack_op_npu.cc
+42
-53
paddle/fluid/operators/unstack_op_npu.cc
paddle/fluid/operators/unstack_op_npu.cc
+85
-0
python/paddle/fluid/tests/unittests/npu/test_stack_op_npu.py
python/paddle/fluid/tests/unittests/npu/test_stack_op_npu.py
+170
-67
python/paddle/fluid/tests/unittests/npu/test_unstack_op_npu.py
...n/paddle/fluid/tests/unittests/npu/test_unstack_op_npu.py
+107
-0
未找到文件。
paddle/fluid/operators/stack_op_npu.cc
浏览文件 @
0b20b76e
...
...
@@ -12,15 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/stack_op.h"
#include "paddle/fluid/operators/
unsqueeze_op
.h"
#include "paddle/fluid/operators/
npu_op_runner
.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -32,64 +25,56 @@ class StackNPUKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
x
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
int32_t
N
=
x
.
size
();
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
axis
+=
(
x
[
0
]
->
dims
().
size
()
+
1
);
int
num
=
static_cast
<
int
>
(
x
.
size
());
PADDLE_ENFORCE_GT
(
N
,
0
,
platform
::
errors
::
InvalidArgument
(
"number of input Tensor <= 0"
));
PADDLE_ENFORCE_GT
(
num
,
0
,
platform
::
errors
::
InvalidArgument
(
"number of input Tensor <= 0"
));
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
std
::
vector
<
paddle
::
framework
::
Tensor
>
x_list
;
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
x_list
.
push_back
(
*
x
[
i
]);
}
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
const
auto
&
runner
=
NpuOpRunner
(
"Pack"
,
{
x_list
},
{
*
y
},
{{
"axis"
,
axis
},
{
"N"
,
num
}});
runner
.
Run
(
stream
);
}
};
if
(
axis
<
0
)
{
axis
=
axis
+
x_list
[
0
].
dims
().
size
()
+
1
;
}
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
template
<
typename
DeviceContext
,
typename
T
>
class
StackGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
dx
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
axis
+=
dy
->
dims
().
size
();
int
num
=
dy
->
dims
()[
axis
];
auto
place
=
ctx
.
GetPlace
();
PADDLE_ENFORCE_GT
(
num
,
0
,
platform
::
errors
::
InvalidArgument
(
"number of input Tensor <= 0"
));
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
out
->
mutable_data
<
T
>
(
place
);
if
(
axis
!=
0
)
{
auto
x_dim
=
x_list
[
0
].
dims
();
std
::
vector
<
int
>
vec_dim_tmp
;
vec_dim_tmp
.
push_back
(
N
);
for
(
auto
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
vec_dim_tmp
.
push_back
(
x_dim
[
i
]);
}
Tensor
tmp_stack
(
out
->
type
());
tmp_stack
.
Resize
(
framework
::
make_ddim
(
vec_dim_tmp
));
tmp_stack
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"Pack"
,
{
x_list
},
{
tmp_stack
},
{{
"axis"
,
0
},
{
"N"
,
N
}});
runner
.
Run
(
stream
);
std
::
vector
<
int64_t
>
vec_trans
;
for
(
auto
i
=
1
;
i
<=
x_dim
.
size
();
++
i
)
{
vec_trans
.
push_back
(
i
);
if
(
i
==
axis
)
{
vec_trans
.
push_back
(
0
);
}
}
const
auto
&
runner_trans_final
=
NpuOpRunner
(
"TransposeD"
,
{
tmp_stack
},
{
*
out
},
{{
"perm"
,
vec_trans
}});
runner_trans_final
.
Run
(
stream
);
}
else
{
const
auto
&
runner
=
NpuOpRunner
(
"Pack"
,
{
x_list
},
{
*
out
},
{{
"axis"
,
axis
},
{
"N"
,
N
}});
runner
.
Run
(
stream
);
std
::
vector
<
paddle
::
framework
::
Tensor
>
dx_list
;
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
dx
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dx_list
.
push_back
(
*
dx
[
i
]);
}
const
auto
&
runner
=
NpuOpRunner
(
"Unpack"
,
{
*
dy
},
{
dx_list
},
{{
"axis"
,
axis
},
{
"num"
,
num
}});
runner
.
Run
(
stream
);
}
};
...
...
@@ -103,4 +88,8 @@ REGISTER_OP_NPU_KERNEL(
ops
::
StackNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
REGISTER_OP_NPU_KERNEL
(
stack_grad
,
ops
::
StackGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
StackGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/unstack_op_npu.cc
0 → 100644
浏览文件 @
0b20b76e
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/unstack_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
UnStackNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
dx
=
ctx
.
MultiOutput
<
Tensor
>
(
"Y"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
axis
+=
dy
->
dims
().
size
();
int
num
=
dy
->
dims
()[
axis
];
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
std
::
vector
<
paddle
::
framework
::
Tensor
>
dx_list
;
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
dx
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dx_list
.
push_back
(
*
dx
[
i
]);
}
const
auto
&
runner
=
NpuOpRunner
(
"Unpack"
,
{
*
dy
},
{
dx_list
},
{{
"axis"
,
axis
},
{
"num"
,
num
}});
runner
.
Run
(
stream
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
UnStackGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
x
=
ctx
.
MultiInput
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
axis
+=
(
x
[
0
]
->
dims
().
size
()
+
1
);
int
num
=
static_cast
<
int
>
(
x
.
size
());
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
std
::
vector
<
paddle
::
framework
::
Tensor
>
x_list
;
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
x_list
.
push_back
(
*
x
[
i
]);
}
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"Pack"
,
{
x_list
},
{
*
y
},
{{
"axis"
,
axis
},
{
"N"
,
num
}});
runner
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
plat
=
paddle
::
platform
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
unstack
,
ops
::
UnStackNPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
UnStackNPUKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
unstack_grad
,
ops
::
UnStackGradNPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
UnStackGradNPUKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_stack_op_npu.py
浏览文件 @
0b20b76e
...
...
@@ -24,17 +24,18 @@ import paddle.fluid as fluid
import
paddle.fluid.core
as
core
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStack
1
(
OpTest
):
class
TestStack
OpBase
(
OpTest
):
def
initDefaultParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
self
.
dtype
=
'float32'
def
initParameters
(
self
):
pass
def
get_x_names
(
self
):
x_names
=
[]
...
...
@@ -44,10 +45,10 @@ class TestStack1(OpTest):
def
setUp
(
self
):
self
.
initDefaultParameters
()
self
.
initParameters
()
self
.
op_type
=
'stack'
self
.
set_npu
()
self
.
op_type
=
"stack"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
self
.
x
=
[]
for
i
in
range
(
self
.
num_inputs
):
self
.
x
.
append
(
...
...
@@ -64,89 +65,191 @@ class TestStack1(OpTest):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
self
.
get_x_names
(),
'Y'
)
class
TestStack2
(
OpTest
):
def
initDefaultParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
2
,
3
,
4
)
self
.
axis
=
-
1
self
.
dtype
=
'float32'
def
get_x_names
(
self
):
x_names
=
[]
for
i
in
range
(
self
.
num_inputs
):
x_names
.
append
(
'x{}'
.
format
(
i
))
return
x_names
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp1
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
num_inputs
=
16
def
setUp
(
self
):
self
.
initDefaultParameters
()
self
.
set_npu
()
self
.
op_type
=
"stack"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
x
=
[]
for
i
in
range
(
self
.
num_inputs
):
self
.
x
.
append
(
np
.
random
.
random
(
size
=
self
.
input_dim
).
astype
(
self
.
dtype
))
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp2
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
num_inputs
=
20
tmp
=
[]
x_names
=
self
.
get_x_names
()
for
i
in
range
(
self
.
num_inputs
):
tmp
.
append
((
x_names
[
i
],
self
.
x
[
i
]))
self
.
inputs
=
{
'X'
:
tmp
}
self
.
outputs
=
{
'Y'
:
np
.
stack
(
self
.
x
,
axis
=
self
.
axis
)}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp3
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
1
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp4
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
4
class
TestStack3
(
OpTest
):
def
initDefaultParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
2
,
3
,
4
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp5
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
1
self
.
dtype
=
'float32'
def
get_x_names
(
self
):
x_names
=
[]
for
i
in
range
(
self
.
num_inputs
):
x_names
.
append
(
'x{}'
.
format
(
i
))
return
x_names
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp6
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
3
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackAPIWithLoDTensorArray
(
unittest
.
TestCase
):
"""
Test stack api when the input(x) is a LoDTensorArray.
"""
def
setUp
(
self
):
self
.
initDefaultParameters
()
self
.
set_npu
()
self
.
op_type
=
"stack"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
axis
=
1
self
.
iter_num
=
3
self
.
input_shape
=
[
2
,
3
]
self
.
x
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
self
.
place
=
paddle
.
NPUPlace
(
0
)
\
if
paddle
.
is_compiled_with_npu
()
else
paddle
.
CPUPlace
()
self
.
set_program
()
def
set_program
(
self
):
self
.
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
self
.
program
):
input
=
fluid
.
layers
.
assign
(
self
.
x
)
tensor_array
=
fluid
.
layers
.
create_array
(
dtype
=
'float32'
)
zero
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
value
=
0
,
dtype
=
"int64"
)
for
i
in
range
(
self
.
iter_num
):
fluid
.
layers
.
array_write
(
input
,
zero
+
i
,
tensor_array
)
self
.
out_var
=
fluid
.
layers
.
stack
(
tensor_array
,
axis
=
self
.
axis
)
def
test_case
(
self
):
self
.
assertTrue
(
self
.
out_var
.
shape
[
self
.
axis
]
==
-
1
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
self
.
program
,
fetch_list
=
self
.
out_var
)
self
.
assertTrue
(
np
.
array_equal
(
res
[
0
],
np
.
stack
(
[
self
.
x
]
*
self
.
iter_num
,
axis
=
self
.
axis
)))
self
.
x
=
[]
for
i
in
range
(
self
.
num_inputs
):
self
.
x
.
append
(
np
.
random
.
random
(
size
=
self
.
input_dim
).
astype
(
self
.
dtype
))
tmp
=
[]
x_names
=
self
.
get_x_names
()
for
i
in
range
(
self
.
num_inputs
):
tmp
.
append
((
x_names
[
i
],
self
.
x
[
i
]))
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestTensorStackAPIWithLoDTensorArray
(
unittest
.
TestCase
):
"""
Test stack api when the input(x) is a LoDTensorArray.
"""
self
.
inputs
=
{
'X'
:
tmp
}
self
.
outputs
=
{
'Y'
:
np
.
stack
(
self
.
x
,
axis
=
self
.
axis
)}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
def
setUp
(
self
):
self
.
axis
=
1
self
.
iter_num
=
3
self
.
input_shape
=
[
2
,
3
]
self
.
x
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
self
.
place
=
paddle
.
NPUPlace
(
0
)
\
if
paddle
.
is_compiled_with_npu
()
else
paddle
.
CPUPlace
()
self
.
set_program
()
def
set_program
(
self
):
self
.
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
self
.
program
):
input
=
fluid
.
layers
.
assign
(
self
.
x
)
tensor_array
=
fluid
.
layers
.
create_array
(
dtype
=
'float32'
)
zero
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
value
=
0
,
dtype
=
"int64"
)
for
i
in
range
(
self
.
iter_num
):
fluid
.
layers
.
array_write
(
input
,
zero
+
i
,
tensor_array
)
self
.
out_var
=
paddle
.
stack
(
tensor_array
,
axis
=
self
.
axis
)
def
test_case
(
self
):
self
.
assertTrue
(
self
.
out_var
.
shape
[
self
.
axis
]
==
-
1
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
self
.
program
,
fetch_list
=
self
.
out_var
)
self
.
assertTrue
(
np
.
array_equal
(
res
[
0
],
np
.
stack
(
[
self
.
x
]
*
self
.
iter_num
,
axis
=
self
.
axis
)))
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
API_test
(
unittest
.
TestCase
):
def
test_out
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
data1
=
fluid
.
layers
.
data
(
'data1'
,
shape
=
[
1
,
2
],
dtype
=
'float64'
)
data2
=
fluid
.
layers
.
data
(
'data2'
,
shape
=
[
1
,
2
],
dtype
=
'float64'
)
data3
=
fluid
.
layers
.
data
(
'data3'
,
shape
=
[
1
,
2
],
dtype
=
'float64'
)
result_stack
=
paddle
.
stack
([
data1
,
data2
,
data3
],
axis
=
0
)
place
=
paddle
.
NPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
input1
=
np
.
random
.
random
([
1
,
2
]).
astype
(
'float64'
)
input2
=
np
.
random
.
random
([
1
,
2
]).
astype
(
'float64'
)
input3
=
np
.
random
.
random
([
1
,
2
]).
astype
(
'float64'
)
result
,
=
exe
.
run
(
feed
=
{
"data1"
:
input1
,
"data2"
:
input2
,
"data3"
:
input3
},
fetch_list
=
[
result_stack
])
expected_result
=
np
.
stack
([
input1
,
input2
,
input3
],
axis
=
0
)
self
.
assertTrue
(
np
.
allclose
(
expected_result
,
result
))
def
test_single_tensor_error
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
x
=
paddle
.
rand
([
2
,
3
])
self
.
assertRaises
(
TypeError
,
paddle
.
stack
,
x
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
API_DygraphTest
(
unittest
.
TestCase
):
def
test_out
(
self
):
data1
=
np
.
array
([[
1.0
,
2.0
]])
data2
=
np
.
array
([[
3.0
,
4.0
]])
data3
=
np
.
array
([[
5.0
,
6.0
]])
with
fluid
.
dygraph
.
guard
(
place
=
paddle
.
NPUPlace
(
0
)):
x1
=
fluid
.
dygraph
.
to_variable
(
data1
)
x2
=
fluid
.
dygraph
.
to_variable
(
data2
)
x3
=
fluid
.
dygraph
.
to_variable
(
data3
)
result
=
paddle
.
stack
([
x1
,
x2
,
x3
])
result_np
=
result
.
numpy
()
expected_result
=
np
.
stack
([
data1
,
data2
,
data3
])
self
.
assertTrue
(
np
.
allclose
(
expected_result
,
result_np
))
with
fluid
.
dygraph
.
guard
(
place
=
paddle
.
NPUPlace
(
0
)):
y1
=
fluid
.
dygraph
.
to_variable
(
data1
)
result
=
paddle
.
stack
([
y1
],
axis
=
0
)
result_np_2
=
result
.
numpy
()
expected_result_2
=
np
.
stack
([
data1
],
axis
=
0
)
self
.
assertTrue
(
np
.
allclose
(
expected_result_2
,
result_np_2
))
def
test_single_tensor_error
(
self
):
with
fluid
.
dygraph
.
guard
(
place
=
paddle
.
NPUPlace
(
0
)):
x
=
paddle
.
to_tensor
([
1
,
2
,
3
])
self
.
assertRaises
(
Exception
,
paddle
.
stack
,
x
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/npu/test_unstack_op_npu.py
0 → 100644
浏览文件 @
0b20b76e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
unittest
import
paddle
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestUnStackOpBase
(
OpTest
):
def
initDefaultParameters
(
self
):
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
def
initParameters
(
self
):
pass
def
get_y_names
(
self
):
y_names
=
[]
for
i
in
range
(
self
.
input_dim
[
self
.
axis
]):
y_names
.
append
(
'y{}'
.
format
(
i
))
return
y_names
def
setUp
(
self
):
self
.
initDefaultParameters
()
self
.
initParameters
()
self
.
op_type
=
'unstack'
self
.
set_npu
()
self
.
init_dtype
()
self
.
x
=
np
.
random
.
random
(
size
=
self
.
input_dim
).
astype
(
self
.
dtype
)
outs
=
np
.
split
(
self
.
x
,
self
.
input_dim
[
self
.
axis
],
self
.
axis
)
new_shape
=
list
(
self
.
input_dim
)
del
new_shape
[
self
.
axis
]
y_names
=
self
.
get_y_names
()
tmp
=
[]
for
i
in
range
(
self
.
input_dim
[
self
.
axis
]):
tmp
.
append
((
y_names
[
i
],
np
.
reshape
(
outs
[
i
],
new_shape
)))
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
outputs
=
{
'Y'
:
tmp
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'num'
:
self
.
input_dim
[
self
.
axis
]}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
self
.
get_y_names
())
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp3
(
TestUnStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp4
(
TestUnStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
3
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp5
(
TestUnStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
1
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestStackOp6
(
TestUnStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
2
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录