未验证 提交 0ab7f949 编写于 作者: Y Yuang Liu 提交者: GitHub

add timer to pp (#53831)

上级 c33ba9d4
...@@ -61,6 +61,7 @@ message MpConfig { ...@@ -61,6 +61,7 @@ message MpConfig {
message PpConfig { message PpConfig {
optional bool dp_comm_overlap = 1 [ default = false ]; optional bool dp_comm_overlap = 1 [ default = false ];
optional bool delay_scale_loss = 2 [ default = false ]; optional bool delay_scale_loss = 2 [ default = false ];
optional bool enable_timer = 3 [ default = false ];
} }
message HybridConfig { message HybridConfig {
......
...@@ -15,6 +15,7 @@ import paddle ...@@ -15,6 +15,7 @@ import paddle
from paddle import framework from paddle import framework
from ..meta_optimizers.dygraph_optimizer import HybridParallelOptimizer from ..meta_optimizers.dygraph_optimizer import HybridParallelOptimizer
from ..utils import timer_helper as timer
from ..utils.hybrid_parallel_util import ( from ..utils.hybrid_parallel_util import (
broadcast_dp_parameters, broadcast_dp_parameters,
broadcast_mp_parameters, broadcast_mp_parameters,
...@@ -73,13 +74,24 @@ class PipelineParallel(MetaParallelBase): ...@@ -73,13 +74,24 @@ class PipelineParallel(MetaParallelBase):
self._dp_comm_overlap = self._strategy.hybrid_configs[ self._dp_comm_overlap = self._strategy.hybrid_configs[
"pp_configs" "pp_configs"
].dp_comm_overlap ].dp_comm_overlap
self._enable_timer = self._strategy.hybrid_configs[
"pp_configs"
].enable_timer
self._dp_comm_buffers = [] self._dp_comm_buffers = []
if self._dp_comm_overlap: if self._dp_comm_overlap:
assert self.use_data_parallel and self.num_stages > 1 assert self.use_data_parallel and self.num_stages > 1
if self._enable_timer:
if not timer.is_timer_initialized():
timer.set_timers()
self.timers = timer.get_timers()
p2p.initialize_p2p_groups( p2p.initialize_p2p_groups(
hcg, self._using_cache, self._enable_partial_send_recv hcg,
self._using_cache,
self._enable_partial_send_recv,
self._enable_timer,
) )
self.global_rank = self._hcg.get_global_rank() self.global_rank = self._hcg.get_global_rank()
...@@ -153,6 +165,12 @@ class PipelineParallel(MetaParallelBase): ...@@ -153,6 +165,12 @@ class PipelineParallel(MetaParallelBase):
for param in parameters: for param in parameters:
param._register_backward_hook(self.bw_hook_func(buffer, param)) param._register_backward_hook(self.bw_hook_func(buffer, param))
def timer_printer(self):
if not self._enable_timer:
return
all_flag_names = self.timers.timers.keys()
self.timers.log(all_flag_names)
def forward_backward_pipeline(self, data, scaler=None): def forward_backward_pipeline(self, data, scaler=None):
# use the 1f1b scheduling strategy. # use the 1f1b scheduling strategy.
# this strategy is inspired by: # this strategy is inspired by:
...@@ -236,9 +254,17 @@ class PipelineParallel(MetaParallelBase): ...@@ -236,9 +254,17 @@ class PipelineParallel(MetaParallelBase):
for buffer in self._dp_comm_buffers: for buffer in self._dp_comm_buffers:
buffer.scale_and_split_grads() buffer.scale_and_split_grads()
if self._enable_timer:
self.timers("allreduce_shared_weight_gradients").start()
self._layers.allreduce_shared_weight_gradients() self._layers.allreduce_shared_weight_gradients()
if self._enable_timer:
self.timers("allreduce_shared_weight_gradients").stop()
self.timers("broadcast_final_loss").start()
with paddle.amp.auto_cast(enable=False): with paddle.amp.auto_cast(enable=False):
train_loss = self._broadcast_final_loss() train_loss = self._broadcast_final_loss()
if self._enable_timer:
self.timers("broadcast_final_loss").stop()
self.timer_printer()
return train_loss return train_loss
def _prepare_training(self, data, optimizer, lr_scheduler): def _prepare_training(self, data, optimizer, lr_scheduler):
...@@ -334,6 +360,8 @@ class PipelineParallel(MetaParallelBase): ...@@ -334,6 +360,8 @@ class PipelineParallel(MetaParallelBase):
return self.train_loss return self.train_loss
def _forward_step(self, input_tensor, chunk_id=None): def _forward_step(self, input_tensor, chunk_id=None):
if self._enable_timer:
self.timers("forward_step").start()
if self.is_pipeline_first_stage(): if self.is_pipeline_first_stage():
input_tensor = self._load_micro_batch(self.micro_batch_id) input_tensor = self._load_micro_batch(self.micro_batch_id)
...@@ -365,9 +393,13 @@ class PipelineParallel(MetaParallelBase): ...@@ -365,9 +393,13 @@ class PipelineParallel(MetaParallelBase):
# Only increase micro batch id at virtual first/last pp stage. # Only increase micro batch id at virtual first/last pp stage.
# The micro batch id is used to load data, therefore, only increase it when load data. # The micro batch id is used to load data, therefore, only increase it when load data.
self.micro_batch_id += 1 self.micro_batch_id += 1
if self._enable_timer:
self.timers("forward_step").stop()
return output_tensor return output_tensor
def _backward_step(self, input_tensor, output_tensor, output_tensor_grad): def _backward_step(self, input_tensor, output_tensor, output_tensor_grad):
if self._enable_timer:
self.timers("backward_step").start()
with paddle.amp.auto_cast(enable=False): with paddle.amp.auto_cast(enable=False):
if self.is_pipeline_last_stage(): if self.is_pipeline_last_stage():
assert output_tensor_grad is None assert output_tensor_grad is None
...@@ -397,6 +429,8 @@ class PipelineParallel(MetaParallelBase): ...@@ -397,6 +429,8 @@ class PipelineParallel(MetaParallelBase):
) )
else: else:
input_tensor_grad = input_tensor.grad input_tensor_grad = input_tensor.grad
if self._enable_timer:
self.timers("backward_step").stop()
return input_tensor_grad return input_tensor_grad
def _check_data_vaild(self, data): def _check_data_vaild(self, data):
...@@ -807,16 +841,25 @@ class PipelineParallelWithInterleave(PipelineParallel): ...@@ -807,16 +841,25 @@ class PipelineParallelWithInterleave(PipelineParallel):
for buffer in self._dp_comm_buffers: for buffer in self._dp_comm_buffers:
buffer.scale_and_split_grads() buffer.scale_and_split_grads()
if self._enable_timer:
self.timers("allreduce_shared_weight_gradients").start()
self._layers.allreduce_shared_weight_gradients() self._layers.allreduce_shared_weight_gradients()
if self._enable_timer:
self.timers("allreduce_shared_weight_gradients").stop()
if compute_loss: if compute_loss:
# return loss if compute loss # return loss if compute loss
if self._enable_timer:
self.timers("broadcast_final_loss").start()
with paddle.amp.auto_cast(enable=False): with paddle.amp.auto_cast(enable=False):
train_loss = self._broadcast_final_loss() train_loss = self._broadcast_final_loss()
if self._enable_timer:
self.timers("broadcast_final_loss").stop()
else: else:
# else just return all intermediate output tensor for all micro steps # else just return all intermediate output tensor for all micro steps
train_loss = self.output_tensors train_loss = self.output_tensors
self.timer_printer()
return train_loss return train_loss
def train_batch(self, data, optimizer, lr_scheduler=None, scaler=None): def train_batch(self, data, optimizer, lr_scheduler=None, scaler=None):
......
...@@ -19,12 +19,14 @@ import numpy as np ...@@ -19,12 +19,14 @@ import numpy as np
import paddle import paddle
from paddle import framework from paddle import framework
from ...utils import timer_helper as timer
from ...utils.log_util import logger from ...utils.log_util import logger
from .utils import number_2_dtype, paddle_2_number from .utils import number_2_dtype, paddle_2_number
_hcg = None _hcg = None
_use_cache = False _use_cache = False
_enable_partial_send_recv = True _enable_partial_send_recv = True
_timers = None
_xpu_comm_group_started = False _xpu_comm_group_started = False
...@@ -50,11 +52,15 @@ def _xpu_comm_group_end(): ...@@ -50,11 +52,15 @@ def _xpu_comm_group_end():
_xpu_comm_group_started = False _xpu_comm_group_started = False
def initialize_p2p_groups(hcg, use_cache=True, enable_partial_send_recv=True): def initialize_p2p_groups(
global _hcg, _use_cache, _enable_partial_send_recv hcg, use_cache=True, enable_partial_send_recv=True, enable_timer=False
):
global _hcg, _use_cache, _enable_partial_send_recv, _timers
_hcg = hcg _hcg = hcg
_use_cache = use_cache _use_cache = use_cache
_enable_partial_send_recv = enable_partial_send_recv _enable_partial_send_recv = enable_partial_send_recv
if enable_timer:
_timers = timer.get_timers()
( (
send_next_group, send_next_group,
send_prev_group, send_prev_group,
...@@ -683,6 +689,9 @@ def _p2p_helper( ...@@ -683,6 +689,9 @@ def _p2p_helper(
def recv_forward(pp_first_stage, sync_recv=True): def recv_forward(pp_first_stage, sync_recv=True):
global _timers
if _timers is not None:
_timers("recv_forward").start()
if pp_first_stage: if pp_first_stage:
input_tensor = None input_tensor = None
else: else:
...@@ -697,10 +706,15 @@ def recv_forward(pp_first_stage, sync_recv=True): ...@@ -697,10 +706,15 @@ def recv_forward(pp_first_stage, sync_recv=True):
recv_next=False, recv_next=False,
sync_recv=sync_recv, sync_recv=sync_recv,
) )
if _timers is not None:
_timers("recv_forward").stop()
return input_tensor return input_tensor
def recv_backward(pp_last_stage, sync_recv=True): def recv_backward(pp_last_stage, sync_recv=True):
global _timers
if _timers is not None:
_timers("recv_backward").start()
if pp_last_stage: if pp_last_stage:
output_tensor_grad = None output_tensor_grad = None
else: else:
...@@ -711,10 +725,15 @@ def recv_backward(pp_last_stage, sync_recv=True): ...@@ -711,10 +725,15 @@ def recv_backward(pp_last_stage, sync_recv=True):
recv_next=True, recv_next=True,
sync_recv=sync_recv, sync_recv=sync_recv,
) )
if _timers is not None:
_timers("recv_backward").stop()
return output_tensor_grad return output_tensor_grad
def send_forward(output_tensor, pp_last_stage): def send_forward(output_tensor, pp_last_stage):
global _timers
if _timers is not None:
_timers("send_forward").start()
if not pp_last_stage: if not pp_last_stage:
if not _send_recv_meta.has_send_meta: if not _send_recv_meta.has_send_meta:
_send_recv_meta.set_send_message(output_tensor) _send_recv_meta.set_send_message(output_tensor)
...@@ -727,9 +746,14 @@ def send_forward(output_tensor, pp_last_stage): ...@@ -727,9 +746,14 @@ def send_forward(output_tensor, pp_last_stage):
recv_prev=False, recv_prev=False,
recv_next=False, recv_next=False,
) )
if _timers is not None:
_timers("send_forward").stop()
def send_backward(input_tensor_grad, pp_first_stage): def send_backward(input_tensor_grad, pp_first_stage):
global _timers
if _timers is not None:
_timers("send_backward").start()
if not pp_first_stage: if not pp_first_stage:
_p2p_helper( _p2p_helper(
tensor_send_next=None, tensor_send_next=None,
...@@ -737,9 +761,14 @@ def send_backward(input_tensor_grad, pp_first_stage): ...@@ -737,9 +761,14 @@ def send_backward(input_tensor_grad, pp_first_stage):
recv_prev=False, recv_prev=False,
recv_next=False, recv_next=False,
) )
if _timers is not None:
_timers("send_backward").stop()
def send_forward_recv_backward(output_tensor, pp_last_stage): def send_forward_recv_backward(output_tensor, pp_last_stage):
global _timers
if _timers is not None:
_timers("send_forward_recv_backward").start()
if pp_last_stage: if pp_last_stage:
output_tensor_grad = None output_tensor_grad = None
else: else:
...@@ -749,10 +778,15 @@ def send_forward_recv_backward(output_tensor, pp_last_stage): ...@@ -749,10 +778,15 @@ def send_forward_recv_backward(output_tensor, pp_last_stage):
recv_prev=False, recv_prev=False,
recv_next=True, recv_next=True,
) )
if _timers is not None:
_timers("send_forward_recv_backward").stop()
return output_tensor_grad return output_tensor_grad
def send_backward_recv_forward(input_tensor_grad, pp_first_stage): def send_backward_recv_forward(input_tensor_grad, pp_first_stage):
global _timers
if _timers is not None:
_timers("send_backward_recv_forward").start()
if pp_first_stage: if pp_first_stage:
input_tensor = None input_tensor = None
else: else:
...@@ -762,6 +796,8 @@ def send_backward_recv_forward(input_tensor_grad, pp_first_stage): ...@@ -762,6 +796,8 @@ def send_backward_recv_forward(input_tensor_grad, pp_first_stage):
recv_prev=True, recv_prev=True,
recv_next=False, recv_next=False,
) )
if _timers is not None:
_timers("send_backward_recv_forward").stop()
return input_tensor return input_tensor
...@@ -769,6 +805,9 @@ def send_forward_backward_recv_forward_backward( ...@@ -769,6 +805,9 @@ def send_forward_backward_recv_forward_backward(
output_tensor, input_tensor_grad, recv_prev, recv_next output_tensor, input_tensor_grad, recv_prev, recv_next
): ):
# always have to send dytpe info to downstream # always have to send dytpe info to downstream
global _timers
if _timers is not None:
_timers("send_forward_backward_recv_forward_backward").start()
if not _send_recv_meta.has_send_meta: if not _send_recv_meta.has_send_meta:
_send_recv_meta.set_send_message(output_tensor) _send_recv_meta.set_send_message(output_tensor)
_send_recv_meta.send_meta(output_tensor, _hcg.send_next_group) _send_recv_meta.send_meta(output_tensor, _hcg.send_next_group)
...@@ -783,11 +822,16 @@ def send_forward_backward_recv_forward_backward( ...@@ -783,11 +822,16 @@ def send_forward_backward_recv_forward_backward(
recv_next=recv_next, recv_next=recv_next,
sync_recv=False, sync_recv=False,
) )
if _timers is not None:
_timers("send_forward_backward_recv_forward_backward").stop()
return input_tensor, output_tensor_grad return input_tensor, output_tensor_grad
def send_forward_recv_forward(output_tensor, recv_prev): def send_forward_recv_forward(output_tensor, recv_prev):
# always have to send dytpe info to downstream # always have to send dytpe info to downstream
global _timers
if _timers is not None:
_timers("send_forward_recv_forward").start()
if not _send_recv_meta.has_send_meta: if not _send_recv_meta.has_send_meta:
_send_recv_meta.set_send_message(output_tensor) _send_recv_meta.set_send_message(output_tensor)
_send_recv_meta.send_meta(output_tensor, _hcg.send_next_group) _send_recv_meta.send_meta(output_tensor, _hcg.send_next_group)
...@@ -803,11 +847,15 @@ def send_forward_recv_forward(output_tensor, recv_prev): ...@@ -803,11 +847,15 @@ def send_forward_recv_forward(output_tensor, recv_prev):
recv_next=False, recv_next=False,
sync_recv=False, sync_recv=False,
) )
if _timers is not None:
_timers("send_forward_recv_forward").stop()
return input_tensor return input_tensor
def send_backward_recv_backward(input_tensor_grad, recv_next): def send_backward_recv_backward(input_tensor_grad, recv_next):
global _timers
if _timers is not None:
_timers("send_backward_recv_backward").start()
_, output_tensor_grad = _p2p_helper( _, output_tensor_grad = _p2p_helper(
tensor_send_next=None, tensor_send_next=None,
tensor_send_prev=input_tensor_grad, tensor_send_prev=input_tensor_grad,
...@@ -815,4 +863,6 @@ def send_backward_recv_backward(input_tensor_grad, recv_next): ...@@ -815,4 +863,6 @@ def send_backward_recv_backward(input_tensor_grad, recv_next):
recv_next=recv_next, recv_next=recv_next,
sync_recv=False, sync_recv=False,
) )
if _timers is not None:
_timers("send_backward_recv_backward").stop()
return output_tensor_grad return output_tensor_grad
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import paddle
_GLOBAL_TIMERS = None
def is_timer_initialized():
return _GLOBAL_TIMERS is not None
def _ensure_var_is_not_initialized(var, name):
"""Make sure the input variable is not None."""
assert var is None, f"{name} has been already initialized."
def _ensure_var_is_initialized(var, name):
"""Make sure the input variable is not None."""
assert var is not None, f"{name} is not initialized."
def get_timers():
_ensure_var_is_initialized(_GLOBAL_TIMERS, "timers")
return _GLOBAL_TIMERS
def set_timers():
"""Initialize timers."""
global _GLOBAL_TIMERS
_ensure_var_is_not_initialized(_GLOBAL_TIMERS, "timers")
_GLOBAL_TIMERS = Timers()
class _Timer:
"""Timer."""
def __init__(self, name):
self.name = name
self.elapsed_ = 0.0
self.started_ = False
self.start_time = time.time()
def start(self):
"""Start the timer."""
assert not self.started_, "timer has already started"
paddle.device.cuda.synchronize()
self.start_time = time.time()
self.started_ = True
def stop(self):
"""Stop the timers."""
assert self.started_, "timer is not started."
paddle.device.cuda.synchronize()
self.elapsed_ += time.time() - self.start_time
self.started_ = False
def reset(self):
"""Reset timer."""
self.elapsed_ = 0.0
self.started_ = False
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self.elapsed_
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
class Timers:
"""Group of timers."""
def __init__(self):
self.timers = {}
def __call__(self, name):
if name not in self.timers:
self.timers[name] = _Timer(name)
return self.timers[name]
def log(self, names, normalizer=1.0, reset=True):
"""Log a group of timers."""
assert normalizer > 0.0
string = "time (ms)"
for name in names:
elapsed_time = (
self.timers[name].elapsed(reset=reset) * 1000.0 / normalizer
)
string += f" | {name}: {elapsed_time:.2f}"
print(string, flush=True)
...@@ -147,6 +147,9 @@ class TestDistPPTraning(unittest.TestCase): ...@@ -147,6 +147,9 @@ class TestDistPPTraning(unittest.TestCase):
"dp_degree": self.data_parallel_size, "dp_degree": self.data_parallel_size,
"mp_degree": self.model_parallel_size, "mp_degree": self.model_parallel_size,
"pp_degree": self.pipeline_parallel_size, "pp_degree": self.pipeline_parallel_size,
"pp_configs": {
"enable_timer": True,
},
} }
strategy.pipeline_configs = { strategy.pipeline_configs = {
"accumulate_steps": batch_size // micro_batch_size, "accumulate_steps": batch_size // micro_batch_size,
......
...@@ -145,6 +145,7 @@ class TestDistPPDelayScaleLoss(TestDistPPTraning): ...@@ -145,6 +145,7 @@ class TestDistPPDelayScaleLoss(TestDistPPTraning):
"pp_degree": self.pipeline_parallel_size, "pp_degree": self.pipeline_parallel_size,
"pp_configs": { "pp_configs": {
"delay_scale_loss": True, "delay_scale_loss": True,
"enable_timer": True,
}, },
} }
strategy.pipeline_configs = { strategy.pipeline_configs = {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册