提交 0ab012cf 编写于 作者: C chengduoZH

fix doc

上级 25df8929
...@@ -23,12 +23,3 @@ REGISTER_OP_CPU_KERNEL(pool2d_cudnn, ...@@ -23,12 +23,3 @@ REGISTER_OP_CPU_KERNEL(pool2d_cudnn,
ops::PoolKernel<paddle::platform::CPUPlace, float>); ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_cudnn_grad, REGISTER_OP_CPU_KERNEL(pool2d_cudnn_grad,
ops::PoolGradKernel<paddle::platform::CPUPlace, float>) ops::PoolGradKernel<paddle::platform::CPUPlace, float>)
// REGISTER_OP(pool3d_cudnn, ops::PoolOp, ops::Pool3dOpMaker, pool3d_cudnn_grad,
// ops::PoolOpGrad);
//
// REGISTER_OP_CPU_KERNEL(pool3d_cudnn,
// ops::PoolKernel<paddle::platform::CPUPlace, float>);
// REGISTER_OP_CPU_KERNEL(pool3d_cudnn_grad,
// ops::PoolGradKernel<paddle::platform::CPUPlace,
// float>);
...@@ -46,11 +46,11 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> { ...@@ -46,11 +46,11 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> {
const T *input_data = input->data<T>(); const T *input_data = input->data<T>();
T *output_data = output->mutable_data<T>(ctx.GetPlace()); T *output_data = output->mutable_data<T>(ctx.GetPlace());
std::string pooling_type = ctx.Attr<std::string>("pooling_type"); std::string pooling_type = ctx.Attr<std::string>("poolingType");
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides"); std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
if (ctx.Attr<bool>("global_pooling")) { if (ctx.Attr<bool>("globalPooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
ksize[i] = static_cast<int>(input->dims()[i + 2]); ksize[i] = static_cast<int>(input->dims()[i + 2]);
} }
...@@ -100,12 +100,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> { ...@@ -100,12 +100,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> {
ctx.Input<Tensor>(framework::GradVarName("Out")); ctx.Input<Tensor>(framework::GradVarName("Out"));
Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X")); Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
std::string pooling_type = ctx.Attr<std::string>("pooling_type"); std::string pooling_type = ctx.Attr<std::string>("poolingType");
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides"); std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
if (ctx.Attr<bool>("global_pooling")) { if (ctx.Attr<bool>("globalPooling")) {
for (size_t i = 0; i < ksize.size(); ++i) for (size_t i = 0; i < ksize.size(); ++i)
ksize[i] = static_cast<int>(input->dims()[i + 2]); ksize[i] = static_cast<int>(input->dims()[i + 2]);
} }
...@@ -169,6 +169,3 @@ namespace ops = paddle::operators; ...@@ -169,6 +169,3 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel<float>); REGISTER_OP_GPU_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel<float>);
REGISTER_OP_GPU_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel<float>); REGISTER_OP_GPU_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel<float>);
//
// REGISTER_OP_GPU_KERNEL(pool3d_cudnn, ops::PoolCudnnOpKernel<float>);
// REGISTER_OP_GPU_KERNEL(pool3d_cudnn_grad, ops::PoolCudnnGradOpKernel<float>);
...@@ -29,7 +29,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const { ...@@ -29,7 +29,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
auto in_x_dims = ctx->GetInputDim("X"); auto in_x_dims = ctx->GetInputDim("X");
std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type"); std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType");
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize"); std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides"); std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings"); std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
...@@ -37,7 +37,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const { ...@@ -37,7 +37,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5, PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D tensor."); "Pooling intput should be 4-D or 5-D tensor.");
if (ctx->Attrs().Get<bool>("global_pooling")) { if (ctx->Attrs().Get<bool>("globalPooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2); ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
for (size_t i = 0; i < ksize.size(); ++i) for (size_t i = 0; i < ksize.size(); ++i)
ksize[i] = static_cast<int>(in_x_dims[i + 2]); ksize[i] = static_cast<int>(in_x_dims[i + 2]);
...@@ -80,34 +80,31 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, ...@@ -80,34 +80,31 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
"the number of channels, H and W is the height and " "the number of channels, H and W is the height and "
"width of feature."); "width of feature.");
AddAttr<std::string>("pooling_type", AddAttr<std::string>("poolingType",
"Pooling_type of pooling operator." "(string), poolingType of pooling operator."
"Str constant equal to 'max' or 'avg'.") "Str constant equal to 'max' or 'avg'.")
.InEnum({"max", "avg"}); .InEnum({"max", "avg"});
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"ksize", "ksize",
"The pooling window size(height, width) of pooling operator." "(vector ), the pooling window size(height, width) of pooling operator."
"If global_pooling = true, ksize is ignored and need not be " "If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Chengduo): Add checker. (Currently, "specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"global_pooling", "globalPooling",
"Whether to use the global_pooling." "(bool default: false), whether to use the global pooling."
"Bool constant equal to false or true." "If globalPooling = true, ksize is ignored and need not be specified.")
"Default false."
"If global_pooling = true, ksize is ignored and need not be specified.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>(
"The strides(height, width) of pooling window." "strides",
"Default {1,1}.") "(vector, default:{1, 1}), strides(height, width) of pooling operator.")
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>("paddings", AddAttr<std::vector<int>>(
"The zero padding(height, width) size on both sides" "paddings",
"Default {0,0}.") "(vector defalut:{0,0}), paddings(height, width) of pooling operator.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddComment(R"DOC( AddComment(R"DOC(
The pooling2d operation calculates the output based on The pooling2d operation calculates the output based on
...@@ -123,7 +120,6 @@ Example: ...@@ -123,7 +120,6 @@ Example:
X shape: (N, C, H_in, W_in) X shape: (N, C, H_in, W_in)
Output: Output:
Out shape: (N, C, H_out, W_out) Out shape: (N, C, H_out, W_out)
Mask shape: (N, C, H_out, W_out)
where where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1; H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1; W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
...@@ -146,33 +142,30 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -146,33 +142,30 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"the number of channels, D, H and W is the depth, height and " "the number of channels, D, H and W is the depth, height and "
"width of feature."); "width of feature.");
AddAttr<std::string>("pooling_type", AddAttr<std::string>("poolingType",
"PoolingType of pooling operator." "(string), poolingType of pooling operator."
"Str constant equal to 'max' or 'avg'.") "Str constant equal to 'max' or 'avg'.")
.InEnum({"max", "avg"}); .InEnum({"max", "avg"});
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"ksize", "ksize",
"The pooling window size(depth, height, width) of pooling operator." "(vector ), the pooling window size(depth, height, width) of pooling "
"If global_pooling = true, ksize is ignored and need not be " "operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Chengduo): Add checker. (Currently, "specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"global_pooling", "globalPooling",
"Whether to use the global_pooling." "(bool default: false), whether to use the global pooling."
"Bool constant equal to false or true." "If globalPooling = true, ksize is ignored and need not be specified.")
"Default false."
"If global_pooling = true, ksize is ignored and need not be specified.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"Strides(depth, height, width) of pooling operator." "(vector, default:{1,1,1}), strides(depth, height, "
"Default {1,1,1}.") "width) of pooling operator.")
.SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>("paddings",
"paddings", "(vector defalut:{0,0,0}), paddings(depth, height, "
"Paddings(depth, height, width) of pooling operator." "width) of pooling operator.")
"Default {0,0,0}.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -190,7 +183,6 @@ Example: ...@@ -190,7 +183,6 @@ Example:
X shape: (N, C, D_in, H_in, W_in) X shape: (N, C, D_in, H_in, W_in)
Output: Output:
Out shape: (N, C, D_out, H_out, W_out) Out shape: (N, C, D_out, H_out, W_out)
Mask shape: (N, C, D_out, H_out, W_out)
where where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1; D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1; H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
......
...@@ -57,11 +57,11 @@ class PoolKernel : public framework::OpKernel<T> { ...@@ -57,11 +57,11 @@ class PoolKernel : public framework::OpKernel<T> {
const Tensor* in_x = context.Input<Tensor>("X"); const Tensor* in_x = context.Input<Tensor>("X");
Tensor* out = context.Output<Tensor>("Out"); Tensor* out = context.Output<Tensor>("Out");
std::string pooling_type = context.Attr<std::string>("pooling_type"); std::string pooling_type = context.Attr<std::string>("poolingType");
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("global_pooling")) { if (context.Attr<bool>("globalPooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
ksize[i] = static_cast<int>(in_x->dims()[i + 2]); ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
} }
...@@ -117,12 +117,12 @@ class PoolGradKernel : public framework::OpKernel<T> { ...@@ -117,12 +117,12 @@ class PoolGradKernel : public framework::OpKernel<T> {
context.Input<Tensor>(framework::GradVarName("Out")); context.Input<Tensor>(framework::GradVarName("Out"));
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X")); Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
std::string pooling_type = context.Attr<std::string>("pooling_type"); std::string pooling_type = context.Attr<std::string>("poolingType");
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("global_pooling")) { if (context.Attr<bool>("globalPooling")) {
for (size_t i = 0; i < ksize.size(); ++i) for (size_t i = 0; i < ksize.size(); ++i)
ksize[i] = static_cast<int>(in_x->dims()[i + 2]); ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
} }
......
...@@ -44,7 +44,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { ...@@ -44,7 +44,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5, PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D tensor."); "Pooling intput should be 4-D or 5-D tensor.");
if (ctx->Attrs().Get<bool>("global_pooling")) { if (ctx->Attrs().Get<bool>("globalPooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2); ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
for (size_t i = 0; i < ksize.size(); ++i) for (size_t i = 0; i < ksize.size(); ++i)
ksize[i] = static_cast<int>(in_x_dims[i + 2]); ksize[i] = static_cast<int>(in_x_dims[i + 2]);
...@@ -105,28 +105,25 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -105,28 +105,25 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"ksize", "ksize",
"The pooling window size(height, width) of pooling operator." "(vector ), the pooling window size(height, width) of pooling operator."
"If global_pooling = true, ksize is ignored and need not be " "If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Chengduo): Add checker. (Currently, "specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"global_pooling", "globalPooling",
"Whether to use the global_pooling." "(bool default: false), whether to use the global pooling."
"Bool constant equal to false or true." "If globalPooling = true, ksize is ignored and need not be specified.")
"Default false."
"If global_pooling = true, ksize is ignored and need not be specified.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>(
"The strides(height, width) of pooling window." "strides",
"Default {1,1}.") "(vector, default:{1, 1}), strides(height, width) of pooling operator.")
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"paddings", "paddings",
"The zero padding(height, width) size on both sides" "(vector defalut:{0,0}), paddings(height, width) of pooling operator.")
"Default {0,0}.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddComment(R"DOC( AddComment(R"DOC(
The maxPooling2d with index operation calculates the output and the mask The maxPooling2d with index operation calculates the output and the mask
...@@ -176,29 +173,26 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -176,29 +173,26 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"ksize", "ksize",
"The pooling window size(depth, height, width) of pooling operator." "(vector ), the pooling window size(depth, height, width) of pooling "
"If global_pooling = true, ksize is ignored and need not be " "operator."
"If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Chengduo): Add checker. (Currently, "specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"global_pooling", "globalPooling",
"Whether to use the global_pooling." "(bool default: false), whether to use the global pooling."
"Bool constant equal to false or true." "If globalPooling = true, ksize is ignored and need not be specified.")
"Default false."
"If global_pooling = true, ksize is ignored and need not be specified.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>("strides",
"strides", "(vector, default:{1,1,1}), strides(depth, "
"Strides(depth, height, width) of pooling operator." "height, width) of pooling operator.")
"Default {1,1,1}.")
.SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>("paddings",
"paddings", "(vector defalut:{0,0,0}), paddings(depth, "
"Paddings(depth, height, width) of pooling operator." "height, width) of pooling operator.")
"Default {0,0,0}.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddComment(R"DOC( AddComment(R"DOC(
The maxpooling3d with index operation calculates the output and the mask The maxpooling3d with index operation calculates the output and the mask
......
...@@ -35,7 +35,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> { ...@@ -35,7 +35,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("global_pooling")) { if (context.Attr<bool>("globalPooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
ksize[i] = static_cast<int>(in_x->dims()[i + 2]); ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
} }
...@@ -70,7 +70,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> { ...@@ -70,7 +70,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize"); std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
if (context.Attr<bool>("global_pooling")) { if (context.Attr<bool>("globalPooling")) {
for (size_t i = 0; i < ksize.size(); ++i) { for (size_t i = 0; i < ksize.size(); ++i) {
ksize[i] = static_cast<int>(in_x_grad->dims()[i + 2]); ksize[i] = static_cast<int>(in_x_grad->dims()[i + 2]);
} }
......
...@@ -56,8 +56,8 @@ class TestPool2d_cudnn_Op(OpTest): ...@@ -56,8 +56,8 @@ class TestPool2d_cudnn_Op(OpTest):
'strides': self.strides, 'strides': self.strides,
'paddings': self.paddings, 'paddings': self.paddings,
'ksize': self.ksize, 'ksize': self.ksize,
'pooling_type': self.pool_type, 'poolingType': self.pool_type,
'global_pooling': self.global_pool, 'globalPooling': self.global_pool,
} }
self.outputs = {'Out': output} self.outputs = {'Out': output}
......
...@@ -56,8 +56,8 @@ class TestPool2d_Op(OpTest): ...@@ -56,8 +56,8 @@ class TestPool2d_Op(OpTest):
'strides': self.strides, 'strides': self.strides,
'paddings': self.paddings, 'paddings': self.paddings,
'ksize': self.ksize, 'ksize': self.ksize,
'pooling_type': self.pool_type, 'poolingType': self.pool_type,
'global_pooling': self.global_pool, 'globalPooling': self.global_pool,
} }
self.outputs = {'Out': output} self.outputs = {'Out': output}
......
...@@ -64,8 +64,8 @@ class TestPool3d_Op(OpTest): ...@@ -64,8 +64,8 @@ class TestPool3d_Op(OpTest):
'strides': self.strides, 'strides': self.strides,
'paddings': self.paddings, 'paddings': self.paddings,
'ksize': self.ksize, 'ksize': self.ksize,
'pooling_type': self.pool_type, 'poolingType': self.pool_type,
'global_pooling': self.global_pool, 'globalPooling': self.global_pool,
} }
self.outputs = {'Out': output} self.outputs = {'Out': output}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册