Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0a9f5f17
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0a9f5f17
编写于
10月 19, 2018
作者:
T
tensor-tang
提交者:
GitHub
10月 19, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13968 from tensor-tang/fix/jit/exp
Fix jit exp
上级
fcb2e810
60ff05e3
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
327 addition
and
134 deletion
+327
-134
paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc
paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc
+3
-3
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-1
paddle/fluid/operators/math/jit_kernel_exp.cc
paddle/fluid/operators/math/jit_kernel_exp.cc
+201
-60
paddle/fluid/operators/math/jit_kernel_lstm.cc
paddle/fluid/operators/math/jit_kernel_lstm.cc
+122
-70
未找到文件。
paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc
浏览文件 @
0a9f5f17
...
@@ -18,12 +18,12 @@ namespace paddle {
...
@@ -18,12 +18,12 @@ namespace paddle {
namespace
inference
{
namespace
inference
{
using
namespace
framework
;
// NOLINT
using
namespace
framework
;
// NOLINT
static
std
::
vector
<
float
>
result_data
;
struct
DataRecord
{
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
link_step_data_all
;
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
link_step_data_all
;
std
::
vector
<
size_t
>
lod
;
std
::
vector
<
size_t
>
lod
;
std
::
vector
<
std
::
vector
<
float
>>
rnn_link_data
;
std
::
vector
<
std
::
vector
<
float
>>
rnn_link_data
;
std
::
vector
<
float
>
result_data
;
size_t
num_samples
;
// total number of samples
size_t
num_samples
;
// total number of samples
size_t
batch_iter
{
0
};
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
batch_size
{
1
};
...
@@ -57,6 +57,7 @@ struct DataRecord {
...
@@ -57,6 +57,7 @@ struct DataRecord {
std
::
ifstream
file
(
path
);
std
::
ifstream
file
(
path
);
std
::
string
line
;
std
::
string
line
;
int
num_lines
=
0
;
int
num_lines
=
0
;
result_data
.
clear
();
while
(
std
::
getline
(
file
,
line
))
{
while
(
std
::
getline
(
file
,
line
))
{
num_lines
++
;
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
std
::
vector
<
std
::
string
>
data
;
...
@@ -135,13 +136,12 @@ TEST(Analyzer_rnn2, profile) {
...
@@ -135,13 +136,12 @@ TEST(Analyzer_rnn2, profile) {
if
(
FLAGS_num_threads
==
1
&&
!
FLAGS_test_all_data
)
{
if
(
FLAGS_num_threads
==
1
&&
!
FLAGS_test_all_data
)
{
// the first inference result
// the first inference result
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
size_t
size
=
GetSize
(
outputs
[
0
]);
size_t
size
=
GetSize
(
outputs
[
0
]);
PADDLE_ENFORCE_GT
(
size
,
0
);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
result
=
static_cast
<
float
*>
(
outputs
[
0
].
data
.
data
());
float
*
result
=
static_cast
<
float
*>
(
outputs
[
0
].
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
result
[
i
],
data
.
result_data
[
i
],
1e-3
);
EXPECT_NEAR
(
result
[
i
],
result_data
[
i
],
1e-3
);
}
}
}
}
}
}
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
0a9f5f17
...
@@ -76,5 +76,5 @@ cc_test(concat_test SRCS concat_test.cc DEPS concat)
...
@@ -76,5 +76,5 @@ cc_test(concat_test SRCS concat_test.cc DEPS concat)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_library
(
jit_kernel
cc_library
(
jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_lstm.cc
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_lstm.cc
DEPS cpu_info cblas
activation_functions
)
DEPS cpu_info cblas
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
paddle/fluid/operators/math/jit_kernel_exp.cc
浏览文件 @
0a9f5f17
此差异已折叠。
点击以展开。
paddle/fluid/operators/math/jit_kernel_lstm.cc
浏览文件 @
0a9f5f17
...
@@ -25,13 +25,18 @@ limitations under the License. */
...
@@ -25,13 +25,18 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
namespace
math
{
namespace
math
{
#ifdef __AVX__
namespace
jitkernel
{
namespace
detail
{
namespace
detail
{
__m256
Exp
(
__m256
a
);
#ifdef __AVX__
}
// namespace detail
__m256
ExpAVX
(
__m256
x
);
#endif
#endif
namespace
jitkernel
{
#ifdef __AVX2__
__m256
ExpAVX2
(
__m256
x
);
#endif
}
// namespace detail
namespace
jit
=
platform
::
jit
;
namespace
jit
=
platform
::
jit
;
#ifdef __AVX__
#ifdef __AVX__
...
@@ -43,43 +48,72 @@ class AVXAct {
...
@@ -43,43 +48,72 @@ class AVXAct {
virtual
__m256
Compute
(
__m256
x
)
const
=
0
;
virtual
__m256
Compute
(
__m256
x
)
const
=
0
;
};
};
template
<
act_type
type
>
template
<
act_type
type
,
jit
::
cpu_isa_t
isa
>
class
AVXActImpl
:
public
AVXAct
{
class
AVXActImpl
:
public
AVXAct
{
public:
public:
__m256
Compute
(
__m256
x
)
const
override
{
PADDLE_THROW
(
"Unkown type!"
);
}
__m256
Compute
(
__m256
x
)
const
override
{
PADDLE_THROW
(
"Unkown type!"
);
}
};
};
template
<
>
#define AVX_SIGMOID(isa, expisa) \
__m256
AVXActImpl
<
kSigmoid
>::
Compute
(
__m256
x
)
const
{
template <> \
__m256
ones
=
_mm256_set1_ps
(
1.0
f
);
__m256 AVXActImpl<kSigmoid, isa>::Compute(__m256 x) const { \
x
=
_mm256_max_ps
(
x
,
_mm256_set1_ps
(
SIGMOID_THRESHOLD_MIN
));
__m256 ones = _mm256_set1_ps(1.0f); \
x
=
_mm256_min_ps
(
x
,
_mm256_set1_ps
(
SIGMOID_THRESHOLD_MAX
));
x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN)); \
x
=
_mm256_sub_ps
(
_mm256_set1_ps
(
0.0
f
),
x
);
x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX)); \
x
=
detail
::
Exp
(
x
);
x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x); \
x
=
_mm256_add_ps
(
ones
,
x
);
x = expisa(x); \
return
_mm256_div_ps
(
ones
,
x
);
x = _mm256_add_ps(ones, x); \
}
return _mm256_div_ps(ones, x); \
}
template
<
>
#define AVX_TANH(isa, expisa) \
__m256
AVXActImpl
<
kTanh
>::
Compute
(
__m256
x
)
const
{
template <> \
__m256
ones
=
_mm256_set1_ps
(
1.0
f
);
__m256 AVXActImpl<kTanh, isa>::Compute(__m256 x) const { \
x
=
_mm256_mul_ps
(
_mm256_set1_ps
(
-
2.0
f
),
x
);
__m256 ones = _mm256_set1_ps(1.0f); \
x
=
_mm256_min_ps
(
x
,
_mm256_set1_ps
(
EXP_MAX_INPUT
));
x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x); \
x
=
detail
::
Exp
(
x
);
x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT)); \
x
=
_mm256_add_ps
(
ones
,
x
);
x = expisa(x); \
x
=
_mm256_div_ps
(
_mm256_set1_ps
(
2.0
f
),
x
);
x = _mm256_add_ps(ones, x); \
return
_mm256_sub_ps
(
x
,
ones
);
x = _mm256_div_ps(_mm256_set1_ps(2.0f), x); \
}
return _mm256_sub_ps(x, ones); \
}
template
<
>
#define AVX_RELU(isa) \
__m256
AVXActImpl
<
kRelu
>::
Compute
(
__m256
x
)
const
{
template <> \
return
_mm256_max_ps
(
x
,
_mm256_setzero_ps
());
__m256 AVXActImpl<kRelu, isa>::Compute(__m256 x) const { \
}
return _mm256_max_ps(x, _mm256_setzero_ps()); \
}
#define AVX_IDENTITY(isa) \
template <> \
__m256 AVXActImpl<kIdentity, isa>::Compute(__m256 x) const { \
return x; \
}
#define FOR_EACH_AVX_ISA(macro_) \
macro_(jit::avx); \
macro_(jit::avx2); \
macro_(jit::avx512f)
FOR_EACH_AVX_ISA
(
AVX_RELU
);
FOR_EACH_AVX_ISA
(
AVX_IDENTITY
);
AVX_SIGMOID
(
jit
::
avx
,
detail
::
ExpAVX
);
AVX_TANH
(
jit
::
avx
,
detail
::
ExpAVX
);
#ifdef __AVX2__
AVX_SIGMOID
(
jit
::
avx2
,
detail
::
ExpAVX2
);
AVX_SIGMOID
(
jit
::
avx512f
,
detail
::
ExpAVX2
);
AVX_TANH
(
jit
::
avx2
,
detail
::
ExpAVX2
);
AVX_TANH
(
jit
::
avx512f
,
detail
::
ExpAVX2
);
#endif
#undef FOR_EACH_AVX_ISA
#undef AVX_IDENTITY
#undef AVX_RELU
#undef AVX_TANH
#undef AVX_SIGMOID
template
<
>
__m256
AVXActImpl
<
kIdentity
>::
Compute
(
__m256
x
)
const
{
return
x
;
}
#endif
#endif
template
<
typename
T
>
template
<
typename
T
>
...
@@ -119,23 +153,6 @@ class LSTMKernelImpl : public LSTMKernel<T> {
...
@@ -119,23 +153,6 @@ class LSTMKernelImpl : public LSTMKernel<T> {
act_cell_d_
=
GetActKernel
<
T
>
(
act_cell
,
d
);
act_cell_d_
=
GetActKernel
<
T
>
(
act_cell
,
d
);
vmul_d_
=
KernelPool
::
Instance
().
template
Get
<
VMulKernel
<
T
>
>
(
d
);
vmul_d_
=
KernelPool
::
Instance
().
template
Get
<
VMulKernel
<
T
>
>
(
d
);
vadd_d_
=
KernelPool
::
Instance
().
template
Get
<
VAddKernel
<
T
>
>
(
d
);
vadd_d_
=
KernelPool
::
Instance
().
template
Get
<
VAddKernel
<
T
>
>
(
d
);
#ifdef __AVX__
auto
GetAVXAct
=
[
&
](
const
std
::
string
&
type
)
->
std
::
unique_ptr
<
AVXAct
>
{
if
(
type
==
"sigmoid"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kSigmoid
>
());
}
else
if
(
type
==
"relu"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kRelu
>
());
}
else
if
(
type
==
"tanh"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kTanh
>
());
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kIdentity
>
());
}
PADDLE_THROW
(
"Not support type: %s"
,
type
);
};
avx_act_gate_
=
GetAVXAct
(
act_gate
);
avx_act_cand_
=
GetAVXAct
(
act_cand
);
avx_act_cell_
=
GetAVXAct
(
act_cell
);
#endif
}
}
void
ComputeCtHt
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
,
const
T
*
wp_data
,
void
ComputeCtHt
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
,
const
T
*
wp_data
,
...
@@ -175,26 +192,61 @@ class LSTMKernelImpl : public LSTMKernel<T> {
...
@@ -175,26 +192,61 @@ class LSTMKernelImpl : public LSTMKernel<T> {
#endif
#endif
};
};
#define INTRI8_FLOAT(isa) \
#define INTRI8_FLOAT(isa) \
template <> \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
float* gates, const float* ct_1, float* ct, float* ht, \
const std::string& act_gate, const std::string& act_cand, \
const float* wp_data, float* checked) const { \
const std::string& act_cell, int d) \
/* gates: W_ch, W_ih, W_fh, W_oh */
\
: LSTMKernel<float>() { \
__m256 c, i, f, o; \
auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> { \
c = _mm256_loadu_ps(gates); \
if (type == "sigmoid") { \
i = _mm256_loadu_ps(gates + 8); \
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>()); \
f = _mm256_loadu_ps(gates + 16); \
} else if (type == "relu") { \
o = _mm256_loadu_ps(gates + 24); \
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>()); \
/* C_t = C_t-1 * fgated + cand_gated * igated*/
\
} else if (type == "tanh") { \
c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>()); \
i = _mm256_loadu_ps(ct_1); \
} else if (type == "identity" || type == "") { \
f = _mm256_mul_ps(i, avx_act_gate_->Compute(f)); \
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>()); \
f = _mm256_add_ps(c, f); \
} \
_mm256_storeu_ps(ct, f); \
PADDLE_THROW("Not support type: %s", type); \
/* H_t = act_cell(C_t) * ogated */
\
}; \
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
avx_act_gate_ = GetAVXAct(act_gate); \
_mm256_storeu_ps(ht, o); \
avx_act_cand_ = GetAVXAct(act_cand); \
avx_act_cell_ = GetAVXAct(act_cell); \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
float* gates, const float* ct_1, float* ct, float* ht, \
const float* wp_data, float* checked) const { \
/* gates: W_ch, W_ih, W_fh, W_oh */
\
__m256 c, i, f, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
f = _mm256_loadu_ps(gates + 16); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = C_t-1 * fgated + cand_gated * igated*/
\
c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
i = _mm256_loadu_ps(ct_1); \
f = _mm256_mul_ps(i, avx_act_gate_->Compute(f)); \
f = _mm256_add_ps(c, f); \
_mm256_storeu_ps(ct, f); \
/* H_t = act_cell(C_t) * ogated */
\
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
float* gates, float* ct, float* ht, const float* wp_data) const { \
__m256 c, i, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = igated * cgated*/
\
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
_mm256_storeu_ps(ct, c); \
/* H_t = act_cell(C_t) * ogated */
\
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
}
}
// TODO(TJ): optimize keq16
// TODO(TJ): optimize keq16
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录