Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
09ae2852
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
09ae2852
编写于
3月 15, 2023
作者:
K
kangguangli
提交者:
GitHub
3月 15, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove unit tests about GraphExecutionOptimizer (#51575)
* remove unit tests about GraphExecutionOptimizer * remove test file
上级
521bba9c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
0 addition
and
472 deletion
+0
-472
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+0
-1
python/paddle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
...dle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
+0
-31
python/paddle/fluid/tests/unittests/collective/fleet/test_fleet_graph_execution_meta_optimizer.py
...ective/fleet/test_fleet_graph_execution_meta_optimizer.py
+0
-331
python/paddle/fluid/tests/unittests/collective/fleet/test_fleet_graph_executor.py
...s/unittests/collective/fleet/test_fleet_graph_executor.py
+0
-102
python/paddle/fluid/tests/unittests/collective/fleet/testslist.csv
...ddle/fluid/tests/unittests/collective/fleet/testslist.csv
+0
-2
tools/parallel_UT_rule.py
tools/parallel_UT_rule.py
+0
-4
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+0
-1
未找到文件。
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
09ae2852
...
...
@@ -520,7 +520,6 @@ endforeach()
if
((
NOT WITH_GPU
)
AND
(
NOT WITH_XPU
)
AND
NOT
(
WITH_ASCEND OR WITH_ASCEND_CL
))
list
(
REMOVE_ITEM TEST_OPS
"test_fleet_graph_execution_meta_optimizer"
)
list
(
REMOVE_ITEM TEST_OPS
"test_dist_mnist_batch_merge"
)
endif
()
...
...
python/paddle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
浏览文件 @
09ae2852
...
...
@@ -138,22 +138,6 @@ if(LOCAL_ALL_ARCH AND LOCAL_ALL_PLAT)
set_tests_properties
(
test_dygraph_sharding_stage3_for_eager PROPERTIES TIMEOUT
"350"
)
endif
()
if
((
WITH_GPU
OR WITH_XPU
OR WITH_ASCEND
OR WITH_ASCEND_CL
)
AND LOCAL_ALL_PLAT
)
bash_test_modules
(
test_fleet_graph_execution_meta_optimizer
START_BASH
../../dist_test.sh
LABELS
"RUN_TYPE=DIST"
ENVS
"PADDLE_DIST_UT_PORT=21216;http_proxy=;https_proxy=;PYTHONPATH=../..:
${
PADDLE_BINARY_DIR
}
/python"
)
endif
()
if
(
WITH_NCCL
)
if
(
LOCAL_ALL_ARCH AND LOCAL_ALL_PLAT
)
py_test_modules
(
...
...
@@ -167,21 +151,6 @@ if(WITH_NCCL)
PROPERTIES TIMEOUT
"120"
LABELS
"RUN_TYPE=DIST"
)
endif
()
endif
()
if
((
WITH_GPU
OR WITH_XPU
OR WITH_ASCEND
OR WITH_ASCEND_CL
)
AND LOCAL_ALL_PLAT
)
bash_test_modules
(
test_fleet_graph_executor
START_BASH
../../dist_test.sh
LABELS
"RUN_TYPE=DIST"
ENVS
"http_proxy=;https_proxy=;PYTHONPATH=../..:
${
PADDLE_BINARY_DIR
}
/python"
)
endif
()
if
((
WITH_GPU
)
AND LOCAL_ALL_PLAT
)
bash_test_modules
(
test_parallel_dygraph_pipeline_parallel
...
...
python/paddle/fluid/tests/unittests/collective/fleet/test_fleet_graph_execution_meta_optimizer.py
已删除
100644 → 0
浏览文件 @
521bba9c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
from
launch_function_helper
import
_find_free_port
,
launch_func
,
wait
class
TestFleetGraphExecutionMetaOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
try
:
self
.
_dist_ut_port_0
=
int
(
os
.
environ
[
"PADDLE_DIST_UT_PORT"
])
self
.
_dist_ut_port_1
=
self
.
_dist_ut_port_0
+
1
except
Exception
as
e
:
self
.
_dist_ut_port_0
=
_find_free_port
(
set
())
self
.
_dist_ut_port_1
=
_find_free_port
(
set
())
def
test_graph_execution_optimizer_not_apply
(
self
):
port_a
=
self
.
_dist_ut_port_0
port_b
=
self
.
_dist_ut_port_1
node_a
=
{
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:{}"
.
format
(
port_a
),
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:{},127.0.0.1:{}"
.
format
(
port_a
,
port_b
),
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"0"
,
}
node_b
=
{
"PADDLE_TRAINER_ID"
:
"1"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:{}"
.
format
(
port_b
),
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:{},127.0.0.1:{}"
.
format
(
port_a
,
port_b
),
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"1"
,
}
def
node_func
():
import
paddle
paddle
.
enable_static
()
import
paddle.distributed.fleet
as
fleet
fleet
.
init
(
is_collective
=
True
)
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
static
.
nn
.
fc
(
x
=
input_x
,
size
=
64
,
activation
=
'tanh'
)
fc_2
=
paddle
.
static
.
nn
.
fc
(
x
=
fc_1
,
size
=
64
,
activation
=
'tanh'
)
prediction
=
paddle
.
static
.
nn
.
fc
(
x
=
[
fc_2
],
size
=
2
,
activation
=
'softmax'
)
cost
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
,
reduction
=
'none'
,
use_softmax
=
False
,
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
exe
=
paddle
.
fluid
.
Executor
()
exe
.
run
(
paddle
.
fluid
.
default_startup_program
())
proc_a
=
launch_func
(
node_func
,
node_a
)
proc_a
.
start
()
proc_b
=
launch_func
(
node_func
,
node_b
)
proc_b
.
start
()
wait
([
proc_a
,
proc_b
])
def
test_graph_execution_optimizer
(
self
):
port_a
=
self
.
_dist_ut_port_0
+
2
port_b
=
self
.
_dist_ut_port_1
+
2
node_a
=
{
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:{}"
.
format
(
port_a
),
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:{},127.0.0.1:{}"
.
format
(
port_a
,
port_b
),
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"0"
,
}
node_b
=
{
"PADDLE_TRAINER_ID"
:
"1"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:{}"
.
format
(
port_b
),
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:{},127.0.0.1:{}"
.
format
(
port_a
,
port_b
),
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"1"
,
}
def
node_func
():
import
paddle
paddle
.
enable_static
()
import
paddle.distributed.fleet
as
fleet
fleet
.
init
(
is_collective
=
True
)
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
static
.
nn
.
fc
(
x
=
input_x
,
size
=
64
,
activation
=
'tanh'
)
fc_2
=
paddle
.
static
.
nn
.
fc
(
x
=
fc_1
,
size
=
64
,
activation
=
'tanh'
)
prediction
=
paddle
.
static
.
nn
.
fc
(
x
=
[
fc_2
],
size
=
2
,
activation
=
'softmax'
)
cost
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
,
reduction
=
'none'
,
use_softmax
=
False
,
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
nccl_comm_num
=
2
strategy
.
sync_nccl_allreduce
=
True
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
exe
=
paddle
.
fluid
.
Executor
()
exe
.
run
(
paddle
.
fluid
.
default_startup_program
())
import
numpy
as
np
def
gen_data
():
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
),
}
for
i
in
range
(
10
):
cost_val
=
exe
.
run
(
feed
=
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"cost of step[{}] = {}"
.
format
(
i
,
cost_val
))
proc_a
=
launch_func
(
node_func
,
node_a
)
proc_a
.
start
()
proc_b
=
launch_func
(
node_func
,
node_b
)
proc_b
.
start
()
wait
([
proc_a
,
proc_b
])
def
test_graph_execution_optimizer_not_apply_v2
(
self
):
port_a
=
self
.
_dist_ut_port_0
+
4
port_b
=
self
.
_dist_ut_port_1
+
4
node_a
=
{
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:{}"
.
format
(
port_a
),
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:{},127.0.0.1:{}"
.
format
(
port_a
,
port_b
),
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"0"
,
}
node_b
=
{
"PADDLE_TRAINER_ID"
:
"1"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:{}"
.
format
(
port_b
),
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:{},127.0.0.1:{}"
.
format
(
port_a
,
port_b
),
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"1"
,
}
def
node_func
():
import
paddle
paddle
.
enable_static
()
import
paddle.distributed.fleet
as
fleet
fleet
.
init
(
is_collective
=
True
)
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
static
.
nn
.
fc
(
x
=
input_x
,
size
=
64
,
activation
=
'tanh'
)
fc_2
=
paddle
.
static
.
nn
.
fc
(
x
=
fc_1
,
size
=
64
,
activation
=
'tanh'
)
prediction
=
paddle
.
static
.
nn
.
fc
(
x
=
[
fc_2
],
size
=
2
,
activation
=
'softmax'
)
cost
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
,
reduction
=
'none'
,
use_softmax
=
False
,
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
exe
=
paddle
.
fluid
.
Executor
()
exe
.
run
(
paddle
.
fluid
.
default_startup_program
())
proc_a
=
launch_func
(
node_func
,
node_a
)
proc_a
.
start
()
proc_b
=
launch_func
(
node_func
,
node_b
)
proc_b
.
start
()
wait
([
proc_a
,
proc_b
])
def
test_graph_execution_optimizer_v2
(
self
):
port_a
=
self
.
_dist_ut_port_0
+
6
port_b
=
self
.
_dist_ut_port_1
+
6
node_a
=
{
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:{}"
.
format
(
port_a
),
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:{},127.0.0.1:{}"
.
format
(
port_a
,
port_b
),
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"0"
,
}
node_b
=
{
"PADDLE_TRAINER_ID"
:
"1"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:{}"
.
format
(
port_b
),
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:{},127.0.0.1:{}"
.
format
(
port_a
,
port_b
),
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"1"
,
}
def
node_func
():
import
paddle
paddle
.
enable_static
()
import
paddle.distributed.fleet
as
fleet
fleet
.
init
(
is_collective
=
True
)
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
static
.
nn
.
fc
(
x
=
input_x
,
size
=
64
,
activation
=
'tanh'
)
fc_2
=
paddle
.
static
.
nn
.
fc
(
x
=
fc_1
,
size
=
64
,
activation
=
'tanh'
)
prediction
=
paddle
.
static
.
nn
.
fc
(
x
=
[
fc_2
],
size
=
2
,
activation
=
'softmax'
)
cost
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
,
reduction
=
'none'
,
use_softmax
=
False
,
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
nccl_comm_num
=
2
strategy
.
sync_nccl_allreduce
=
True
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
exe
=
paddle
.
fluid
.
Executor
()
exe
.
run
(
paddle
.
fluid
.
default_startup_program
())
import
numpy
as
np
def
gen_data
():
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
),
}
for
i
in
range
(
10
):
cost_val
=
exe
.
run
(
feed
=
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"cost of step[{}] = {}"
.
format
(
i
,
cost_val
))
proc_a
=
launch_func
(
node_func
,
node_a
)
proc_a
.
start
()
proc_b
=
launch_func
(
node_func
,
node_b
)
proc_b
.
start
()
wait
([
proc_a
,
proc_b
])
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/collective/fleet/test_fleet_graph_executor.py
已删除
100644 → 0
浏览文件 @
521bba9c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
from
launch_function_helper
import
launch_func
def
node_func
():
import
paddle
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
paddle
.
enable_static
()
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
static
.
nn
.
fc
(
x
=
input_x
,
size
=
64
,
activation
=
'tanh'
)
fc_2
=
paddle
.
static
.
nn
.
fc
(
x
=
fc_1
,
size
=
64
,
activation
=
'tanh'
)
prediction
=
paddle
.
static
.
nn
.
fc
(
x
=
[
fc_2
],
size
=
2
,
activation
=
'softmax'
)
cost
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
,
reduction
=
'none'
,
use_softmax
=
False
,
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
nccl_comm_num
=
2
strategy
.
sync_nccl_allreduce
=
True
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
exe
=
paddle
.
fluid
.
Executor
()
exe
.
run
(
paddle
.
fluid
.
default_startup_program
())
import
numpy
as
np
def
gen_data
():
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
),
}
for
i
in
range
(
5
):
cost_val
=
exe
.
run
(
feed
=
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"cost of step[{}] = {}"
.
format
(
i
,
cost_val
))
class
TestFleetGraphExecutionMetaOptimizer
(
unittest
.
TestCase
):
def
test_graph_execution_optimizer
(
self
):
node_a
=
{
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:36001"
,
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:36001,127.0.0.1:36002"
,
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"0"
,
}
node_b
=
{
"PADDLE_TRAINER_ID"
:
"1"
,
"PADDLE_CURRENT_ENDPOINT"
:
"127.0.0.1:36002"
,
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
"127.0.0.1:36001,127.0.0.1:36002"
,
"http_proxy"
:
""
,
"https_proxy"
:
""
,
"FLAGS_selected_gpus"
:
"1"
,
}
# rank 1
proc_b
=
launch_func
(
node_func
,
node_b
)
proc_b
.
start
()
# rank 0, for wait server ready coverage
# just for coverage
for
key
in
node_a
:
os
.
environ
[
key
]
=
node_a
[
key
]
node_func
()
proc_b
.
join
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/collective/fleet/testslist.csv
浏览文件 @
09ae2852
...
...
@@ -11,9 +11,7 @@ test_rnn_dp,,GPU;XPU;ASCEND;ASCEND_CL,,DIST,../../dist_test.sh,2,,http_proxy=;ht
test_parallel_dygraph_mp_layers,,GPU,120,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,WITH_NCCL
test_tcp_store,LINUX;APPLE,,,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_dygraph_sharding_stage3_for_eager,,,350,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_fleet_graph_execution_meta_optimizer,,GPU;XPU;ASCEND;ASCEND_CL,,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_communicator_half_async,,,120,DIST,test_runner.py,2,,FLAGS_communicator_send_queue_size=1;FLAGS_communicator_max_merge_var_num=1;http_proxy=;https_proxy=;PYTHONPATH=../..,WITH_NCCL
test_fleet_graph_executor,,GPU;XPU;ASCEND;ASCEND_CL,,,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_parallel_dygraph_pipeline_parallel,,GPU,500,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_parallel_dygraph_pipeline_parallel_with_virtual_stage,,GPU,500,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_fleet_localsgd_meta_optimizer,LINUX,GPU;XPU;ASCEND;ASCEND_CL,,,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
...
...
tools/parallel_UT_rule.py
浏览文件 @
09ae2852
...
...
@@ -265,7 +265,6 @@ HIGH_PARALLEL_JOB_NEW = [
'test_pool2d_int8_mkldnn_op'
,
'test_mul_int8_mkldnn_op'
,
'test_scale_matmul_fuse_pass'
,
'test_fleet_graph_executor'
,
'decorator_test'
,
'test_collective_base'
,
'test_multi_gru_mkldnn_op'
,
...
...
@@ -536,7 +535,6 @@ HIGH_PARALLEL_JOB_NEW = [
'test_dist_sparse_tensor_load_rmsprop'
,
'test_collective_split_embedding_none_divisible'
,
'test_parallel_dygraph_dataparallel'
,
'test_fleet_graph_execution_meta_optimizer'
,
'test_dist_fleet_ps3'
,
'test_dist_mnist_pg'
,
'test_pipeline_parallel'
,
...
...
@@ -2101,7 +2099,6 @@ CPU_PARALLEL_JOB = [
'test_auto_checkpoint'
,
'test_fleet_pipeline_meta_optimizer'
,
'test_dist_fleet_heter_ctr'
,
'test_fleet_graph_execution_meta_optimizer'
,
'test_fleet_run_random_port'
,
'test_dist_fleet_ps5'
,
'test_dist_fleet_a_sync_optimizer_auto'
,
...
...
@@ -2175,7 +2172,6 @@ CPU_PARALLEL_JOB = [
'test_fleet_meta_optimizer_base'
,
'table_test'
,
'test_fleet_rolemaker_new'
,
'test_fleet_graph_executor'
,
'test_multi_out_jit'
,
'test_fleet_utils'
,
'brpc_service_dense_sgd_test'
,
...
...
tools/static_mode_white_list.py
浏览文件 @
09ae2852
...
...
@@ -649,7 +649,6 @@ STATIC_MODE_TESTING_LIST = [
'test_mix_precision_all_reduce_fuse'
,
'test_rank_attention_op'
,
'test_fleet_base'
,
'test_fleet_graph_executor'
,
'test_fleet_meta_optimizer_base'
,
'test_ir_memory_optimize_transformer'
,
'test_trt_fc_fuse_pass'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录