未验证 提交 096a07e8 编写于 作者: J jianghaicheng 提交者: GitHub

ipu_commit_tests p4 (#38092)

上级 d12d8389
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest,
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_feed()
self.set_feed_attr()
self.set_attrs()
def set_feed(self):
self.feed = {
"x": np.random.uniform(size=[3, 7]).astype('float32'),
"label": np.arange(3).reshape([3]).astype(np.int64),
}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self):
self.attrs = {'soft_label': False, }
def _test_base(self, run_ipu=True):
scope = fluid.core.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
SEED = self.SEED
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype=self.feed_dtype[0])
# [warning] Copying (host) tensor input/1 from INT64 to INT32.
# Will only warn once
if run_ipu:
label = paddle.static.data(
name=self.feed_list[1],
shape=self.feed_shape[1],
dtype='int32')
else:
label = paddle.static.data(
name=self.feed_list[1],
shape=self.feed_shape[1],
dtype='int64')
out = fluid.layers.cross_entropy(
input=x, label=label, **self.attrs)
fetch_list = [out.name]
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if run_ipu:
feed_list = self.feed_list
ipu_strategy = compiler.get_ipu_strategy()
ipu_strategy.is_training = self.is_training
program = compiler.IPUCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list)
return result[0]
def test_base(self):
res0 = self._test_base(True)
res1 = self._test_base(False)
self.assertTrue(
np.allclose(
res0.flatten(), res1.flatten(), atol=self.atol))
self.assertTrue(res0.shape == res1.shape)
class TestCase1(TestBase):
def set_attrs(self):
self.attrs = {
'soft_label': False,
'ignore_index': 1,
}
@unittest.skip("soft_label=True id not supported")
class TestCase2(TestBase):
def set_attrs(self):
self.attrs = {'soft_label': True, }
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest,
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_feed()
self.set_feed_attr()
self.set_attrs()
def set_feed(self):
self.feed = {
"x": np.random.uniform(size=[1, 3, 10, 10]).astype('float32')
}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self):
self.attrs = {
"dropout_prob": 0.5,
"is_test": True,
"dropout_implementation": "downgrade_in_infer"
}
def _test_base(self, run_ipu=True):
scope = fluid.core.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
SEED = self.SEED
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype=self.feed_dtype[0])
dropout = paddle.fluid.layers.dropout(x, **self.attrs)
out = paddle.fluid.layers.elementwise_add(dropout, dropout)
fetch_list = [out.name]
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if run_ipu:
feed_list = self.feed_list
ipu_strategy = compiler.get_ipu_strategy()
ipu_strategy.is_training = self.is_training
program = compiler.IPUCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list)
return result[0]
def test_base(self):
res0 = self._test_base(True)
res1 = self._test_base(False)
self.assertTrue(
np.allclose(
res0.flatten(), res1.flatten(), atol=self.atol))
self.assertTrue(res0.shape == res1.shape)
class TestCase1(TestBase):
def set_attrs(self):
self.attrs = {
"dropout_prob": 0.5,
"is_test": True,
"dropout_implementation": "upscale_in_train"
}
class TestCase2(TestBase):
def set_attrs(self):
self.attrs = {
"dropout_prob": 0.0,
"is_test": False,
"dropout_implementation": "upscale_in_train"
}
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest,
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestMul(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.init_op()
def init_op(self):
self.op = paddle.fluid.layers.elementwise_mul
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def _test_base(self, run_ipu=True):
scope = fluid.core.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
SEED = self.SEED
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype=self.feed_dtype[0])
y = paddle.static.data(
name=self.feed_list[1],
shape=self.feed_shape[1],
dtype=self.feed_dtype[1])
out = self.op(x, y, **self.attrs)
fetch_list = [out.name]
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if run_ipu:
feed_list = self.feed_list
ipu_strategy = compiler.get_ipu_strategy()
ipu_strategy.is_training = self.is_training
program = compiler.IPUCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list)
return result[0]
def run_test_base(self):
res0 = self._test_base(True)
res1 = self._test_base(False)
self.assertTrue(
np.allclose(
res0.flatten(), res1.flatten(), atol=self.atol))
self.assertTrue(res0.shape == res1.shape)
def test_case0(self):
self.feed = {
"x": np.random.uniform(size=(2, 3, 4, 5)).astype('float32'),
"y": np.random.uniform(size=(2, 3, 4, 5)).astype('float32'),
}
self.attrs = {}
self.set_feed_attr()
self.run_test_base()
def test_case1(self):
self.feed = {
"x": np.random.uniform(size=(2, 3, 4, 5)).astype('float32'),
"y": np.random.uniform(size=(3, 4)).astype('float32'),
}
self.set_feed_attr()
self.attrs = {"axis": 1}
self.run_test_base()
def test_case2(self):
self.feed = {
"x": np.random.uniform(size=(2, 3, 4, 5)).astype('float32'),
"y": np.random.uniform(size=(5)).astype('float32'),
}
self.set_feed_attr()
self.attrs = {"axis": -1}
self.run_test_base()
def test_case3(self):
self.feed = {
"x": np.random.uniform(size=(2, 3, 4, 5)).astype('float32'),
"y": np.random.uniform(size=(2)).astype('float32'),
}
self.set_feed_attr()
self.attrs = {"axis": 0}
self.run_test_base()
class TestAdd(TestMul):
def init_op(self):
self.op = paddle.fluid.layers.elementwise_add
class TestSub(TestMul):
def init_op(self):
self.op = paddle.fluid.layers.elementwise_sub
class TestDiv(TestMul):
def init_op(self):
self.op = paddle.fluid.layers.elementwise_div
class TestMin(TestMul):
def init_op(self):
self.op = paddle.fluid.layers.elementwise_min
class TestMax(TestMul):
def init_op(self):
self.op = paddle.fluid.layers.elementwise_max
class TestPow(TestMul):
def init_op(self):
self.op = paddle.fluid.layers.elementwise_pow
class TestMod(TestMul):
def init_op(self):
self.op = paddle.fluid.layers.elementwise_mod
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest,
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_feed()
self.set_feed_attr()
self.set_attrs()
def set_feed(self):
self.feed = {
"x": np.ones([1, 10]).astype('float32'),
"y": np.zeros([1, 10]).astype('float32'),
}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self):
self.attrs = {}
def _test_base(self, run_ipu=True):
scope = fluid.core.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
SEED = self.SEED
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
# XX
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype=self.feed_dtype[0])
y = paddle.static.data(
name=self.feed_list[1],
shape=self.feed_shape[1],
dtype=self.feed_dtype[1])
out = paddle.fluid.layers.equal(x, y, **self.attrs)
fetch_list = [out.name]
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if run_ipu:
feed_list = self.feed_list
ipu_strategy = compiler.get_ipu_strategy()
ipu_strategy.is_training = self.is_training
program = compiler.IPUCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list)
return result[0]
def test_base(self):
res0 = self._test_base(True)
res1 = self._test_base(False)
self.assertTrue(
np.allclose(
res0.flatten(), res1.flatten(), atol=self.atol))
self.assertTrue(res0.shape == res1.shape)
class TestCase1(TestBase):
def set_feed(self):
self.feed = {
"x": np.ones([1, 10]).astype('float32'),
"y": np.ones([1, 10]).astype('float32'),
}
class TestCase2(TestBase):
def set_feed(self):
self.feed = {
"x": np.ones([1, 10]).astype('float32'),
"y": np.arange(0, 10).reshape([1, 10]).astype('float32'),
}
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest,
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_feed()
self.set_feed_attr()
self.set_attrs()
def set_feed(self):
self.feed = {"x": np.random.uniform(size=[2, 3, 1]).astype('float32')}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self):
self.attrs = {"expand_times": [1, 2, 2]}
def _test_base(self, run_ipu=True):
scope = fluid.core.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
SEED = self.SEED
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype=self.feed_dtype[0])
out = paddle.fluid.layers.expand(x, **self.attrs)
fetch_list = [out.name]
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if run_ipu:
feed_list = self.feed_list
ipu_strategy = compiler.get_ipu_strategy()
ipu_strategy.is_training = self.is_training
program = compiler.IPUCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list)
return result[0]
def test_base(self):
res0 = self._test_base(False)
res1 = self._test_base(True)
self.assertTrue(
np.allclose(
res0.flatten(), res1.flatten(), atol=self.atol))
self.assertTrue(res0.shape == res1.shape)
class TestCase1(TestBase):
def set_feed(self):
self.feed = {"x": np.random.uniform(size=[2, 2]).astype('float32')}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self):
self.attrs = {}
def _test_base(self, run_ipu=True):
scope = fluid.core.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
SEED = self.SEED
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype=self.feed_dtype[0])
expand_times = fluid.layers.fill_constant(
shape=[len(self.feed_shape[0])], dtype="int32", value=2)
out = paddle.fluid.layers.expand(
x, expand_times=expand_times, **self.attrs)
fetch_list = [out.name]
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if run_ipu:
feed_list = self.feed_list
ipu_strategy = compiler.get_ipu_strategy()
ipu_strategy.is_training = self.is_training
program = compiler.IPUCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list)
return result[0]
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest,
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_feed()
self.set_feed_attr()
self.set_attrs()
def set_feed(self):
self.feed = {}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self):
self.attrs = {
'name': 'x',
'shape': [1, 3, 3, 3],
'dtype': 'float32',
'value': 0.3,
}
def _test_base(self, run_ipu=True):
scope = fluid.core.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
SEED = self.SEED
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.fluid.layers.fill_constant(**self.attrs)
out = paddle.fluid.layers.elementwise_add(x, x)
fetch_list = [out.name]
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if run_ipu:
feed_list = self.feed_list
ipu_strategy = compiler.get_ipu_strategy()
ipu_strategy.is_training = self.is_training
program = compiler.IPUCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list)
return result[0]
def test_base(self):
res0 = self._test_base(False)
res1 = self._test_base(True)
self.assertTrue(
np.allclose(
res0.flatten(), res1.flatten(), atol=self.atol))
self.assertTrue(res0.shape == res1.shape)
class TestCase1(TestBase):
def set_attrs(self):
self.attrs = {
'name': 'x',
'shape': [1, 3, 3, 3],
'dtype': 'int32',
'value': 3.0,
}
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest,
np_dtype_to_fluid_str)
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_feed()
self.set_feed_attr()
self.set_attrs()
def set_feed(self):
self.feed = {
"x": np.random.uniform(size=[10, 20]).astype('float32'),
"y": np.array([1, 3, 5]).astype('int32'),
}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed.values()]
self.feed_list = list(self.feed.keys())
self.feed_dtype = [
np_dtype_to_fluid_str(x.dtype) for x in self.feed.values()
]
def set_attrs(self):
self.attrs = {}
def _test_base(self, run_ipu=True):
scope = fluid.core.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
SEED = self.SEED
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
with fluid.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype=self.feed_dtype[0])
y = paddle.static.data(
name=self.feed_list[1],
shape=self.feed_shape[1],
dtype=self.feed_dtype[1])
out = paddle.fluid.layers.gather(x, index=y, **self.attrs)
fetch_list = [out.name]
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
if run_ipu:
feed_list = self.feed_list
ipu_strategy = compiler.get_ipu_strategy()
ipu_strategy.is_training = self.is_training
program = compiler.IPUCompiledProgram(
main_prog,
ipu_strategy=ipu_strategy).compile(feed_list, fetch_list)
else:
program = main_prog
result = exe.run(program, feed=self.feed, fetch_list=fetch_list)
return result[0]
def test_base(self):
res0 = self._test_base(False)
res1 = self._test_base(True)
self.assertTrue(
np.allclose(
res0.flatten(), res1.flatten(), atol=self.atol))
self.assertTrue(res0.shape == res1.shape)
class TestCase1(TestBase):
def set_feed(self):
self.feed = {
"x": np.random.uniform(size=[100]).astype('float32'),
"y": np.array([1, 3, 5]).astype('int32'),
}
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册