未验证 提交 09569323 编写于 作者: Z zhangyikun02 提交者: GitHub

update docs for ResNetBasicBlock, test=kunlun (#44607)

上级 37bc2d7b
......@@ -211,28 +211,108 @@ def resnet_basic_block(x,
class ResNetBasicBlock(Layer):
"""
r"""
ResNetBasicBlock is designed for optimize the performence of the basic unit of ssd resnet block.
The fusion op architecture like this:
has_shortcut = True: else:
X X
/ /
| | | |
CONV1 | CONV1 |
| | | |
BN1 | BN1 |
| | | |
RELU1 | RELU1 |
| | | |
CONV2 CONV3 CONV2 |
| | | |
BN2 BN3 BN2 |
\ / \ /
ADD ADD
| |
RELU RELU
| |
Y Y
If has_shortcut = True, it can calculate 3 Conv2D, 3 BatchNorm and 2 ReLU in one time.
If has_shortcut = False, it can calculate 2 Conv2D, 2 BatchNorm and 2 ReLU in one time. In this
case the shape of output is same with input.
Args:
num_channels (int): The number of input image channel.
num_filter (int): The number of filter. It is as same as the output image channel.
filter_size (int|list|tuple): The filter size. If filter_size
is a tuple, it must contain two integers, (filter_size_height,
filter_size_width). Otherwise, filter_size_height = filter_size_width =\
filter_size.
stride (int, optional): The stride size. It means the stride in convolution.
If stride is a tuple, it must contain two integers, (stride_height, stride_width).
Otherwise, stride_height = stride_width = stride. Default: stride = 1.
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None
momentum (float, optional): The value used for the moving_mean and
moving_var computation. This should be a float number or a Tensor with
shape [1] and data type as float32. The updated formula is:
:math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
:math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
Default is 0.9.
eps (float, optional): A value added to the denominator for
numerical stability. Default is 1e-5.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. Now is only support `"NCHW"`, the data is stored in
the order of: `[batch_size, input_channels, input_height, input_width]`.
has_shortcut (bool, optional): Whether to calculate CONV3 and BN3. Default: False.
use_global_stats (bool, optional): Whether to use global mean and
variance. In inference or test mode, set use_global_stats to true
or is_test to true, and the behavior is equivalent.
In train mode, when setting use_global_stats True, the global mean
and variance are also used during train period. Default: False.
is_test (bool, optional): A flag indicating whether it is in
test phrase or not. Default: False.
filter_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. Default: None.
scale_attr (ParamAttr|None): The parameter attribute for Parameter `scale`
of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr
as param_attr, the name of scale can be set in ParamAttr. If the Initializer of the param_attr is not set,
the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The parameter attribute for the bias of batch_norm.
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
Default: None.
moving_mean_name (str, optional): The name of moving_mean which store the global Mean. If it
is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
will save global mean with the string. Default: None.
moving_var_name (str, optional): The name of the moving_variance which store the global Variance.
If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
will save global variance with the string. Default: None.
padding (int, optional): The padding size. It is only spupport padding_height = padding_width = padding.
Default: padding = 0.
dilation (int, optional): The dilation size. It means the spacing between the kernel
points. It is only spupport dilation_height = dilation_width = dilation.
Default: dilation = 1.
trainable_statistics (bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
Default: False.
find_conv_max (bool, optional): Whether to calculate max value of each conv2d. Default: True.
Returns:
A Tensor representing the ResNetBasicBlock, whose data type is the same with input.
Examples:
.. code-block:: python
# required: xpu
import paddle
from paddle.incubate.xpu.resnet_block import ResNetBasicBlock
ch_in = 4
ch_out = 8
x = paddle.uniform((2, ch_in, 16, 16), dtype='float32', min=-1., max=1.)
resnet_basic_block = ResNetBasicBlock(num_channels1=ch_in,
num_filter1=ch_out,
filter1_size=3,
num_channels2=ch_out,
num_filter2=ch_out,
filter2_size=3,
num_channels3=ch_in,
num_filter3=ch_out,
filter3_size=1,
stride1=1,
stride2=1,
stride3=1,
act='relu',
padding1=1,
padding2=1,
padding3=0,
has_shortcut=True)
out = resnet_basic_block.forward(x)
print(out.shape) # [2, 8, 16, 16]
"""
def __init__(self,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册