Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
09409bad
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
09409bad
编写于
10月 26, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
staged. test speed=49ms in 1080.
上级
468467f3
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
310 addition
and
216 deletion
+310
-216
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+62
-62
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+30
-2
paddle/fluid/inference/api/demo_ci/CMakeLists.txt
paddle/fluid/inference/api/demo_ci/CMakeLists.txt
+2
-3
paddle/fluid/inference/api/demo_ci/real_data_icnet_tester.cc
paddle/fluid/inference/api/demo_ci/real_data_icnet_tester.cc
+55
-49
paddle/fluid/inference/api/demo_ci/thread_icnet_test.cc
paddle/fluid/inference/api/demo_ci/thread_icnet_test.cc
+77
-50
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+2
-2
paddle/fluid/operators/load_combine_op.cc
paddle/fluid/operators/load_combine_op.cc
+12
-12
paddle/fluid/operators/top_k_op.cc
paddle/fluid/operators/top_k_op.cc
+1
-1
paddle/fluid/operators/top_k_op.cu
paddle/fluid/operators/top_k_op.cu
+68
-31
paddle/fluid/operators/top_k_op.h
paddle/fluid/operators/top_k_op.h
+1
-4
未找到文件。
paddle/fluid/framework/executor.cc
浏览文件 @
09409bad
...
@@ -397,72 +397,72 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
...
@@ -397,72 +397,72 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
}
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
VLOG
(
3
)
<<
"start checking"
;
//
VLOG(3) << "start checking";
auto
&
dev_ctx
=
*
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
);
//
auto& dev_ctx = *platform::DeviceContextPool::Instance().Get(place_);
std
::
vector
<
std
::
string
>
outputs
;
//
std::vector<std::string> outputs;
auto
&
block
=
ctx
->
prog_
.
Block
(
0
);
//
auto& block = ctx->prog_.Block(0);
for
(
auto
&
op
:
block
.
AllOps
())
{
//
for(auto& op : block.AllOps()) {
if
(
op
->
Type
()
==
"load_combine"
||
op
->
Type
()
==
"fetch"
||
op
->
Type
()
==
"feed"
)
continue
;
//
if(op->Type() == "load_combine" || op->Type() == "fetch" || op->Type() == "feed") continue;
// for(auto& real_op : ctx->ops_) {
//
// for(auto& real_op : ctx->ops_) {
// if(real_op->Type() == op->Type()) {
//
// if(real_op->Type() == op->Type()) {
// VLOG(3) << real_op->Type() << " " <<place_ << " " << real_op->DebugStringEx(local_scope);
//
// VLOG(3) << real_op->Type() << " " <<place_ << " " << real_op->DebugStringEx(local_scope);
// }
//
// }
// }
//
// }
//VLOG(3) << "start op output" << op->Type();
//
//VLOG(3) << "start op output" << op->Type();
for
(
auto
var_name
:
op
->
InputArgumentNames
())
{
//
for(auto var_name: op->InputArgumentNames()) {
auto
*
var
=
local_scope
->
Var
(
var_name
);
//
auto* var = local_scope->Var(var_name);
auto
*
var_desc
=
block
.
FindVar
(
var_name
);
//
auto* var_desc = block.FindVar(var_name);
if
(
var_desc
->
Persistable
())
continue
;
//
if (var_desc->Persistable()) continue;
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
//
auto* tensor = var->GetMutable<framework::LoDTensor>();
framework
::
Tensor
check
;
//
framework::Tensor check;
VLOG
(
3
)
<<
"before tensor copy"
;
//
VLOG(3) << "before tensor copy";
framework
::
TensorCopy
(
*
tensor
,
platform
::
CPUPlace
(),
dev_ctx
,
&
check
);
//
framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
VLOG
(
3
)
<<
"after tensor copy"
;
//
VLOG(3) << "after tensor copy";
float
sum
=
.0
;
//
float sum = .0;
for
(
size_t
i
=
0
;
i
<
check
.
numel
();
++
i
)
{
//
for(size_t i=0; i < check.numel(); ++i) {
if
(
std
::
type_index
(
check
.
type
())
==
std
::
type_index
(
typeid
(
int64_t
)))
{
//
if(std::type_index(check.type()) == std::type_index(typeid(int64_t))) {
sum
+=
static_cast
<
float
>
(
check
.
data
<
int64_t
>
()[
i
]);
//
sum += static_cast<float>(check.data<int64_t>()[i]);
}
else
{
//
} else {
sum
+=
check
.
data
<
float
>
()[
i
];
//
sum += check.data<float>()[i];
}
//
}
}
//
}
VLOG
(
3
)
<<
"op "
<<
op
->
Type
()
<<
" input var "
<<
var_name
<<
" sum "
<<
sum
;
//
VLOG(3) << "op " << op->Type() << " input var " << var_name << " sum " << sum;
}
//
}
VLOG
(
3
)
<<
"op "
<<
op
->
Type
()
<<
"input finished"
;
//
VLOG(3) << "op " << op->Type() << "input finished";
for
(
auto
var_name
:
op
->
OutputArgumentNames
())
{
//
for(auto var_name: op->OutputArgumentNames()) {
auto
*
var
=
local_scope
->
Var
(
var_name
);
//
auto* var = local_scope->Var(var_name);
auto
*
var_desc
=
block
.
FindVar
(
var_name
);
//
auto* var_desc = block.FindVar(var_name);
if
(
var_desc
->
Persistable
())
continue
;
//
if (var_desc->Persistable()) continue;
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
//
auto* tensor = var->GetMutable<framework::LoDTensor>();
framework
::
Tensor
check
;
//
framework::Tensor check;
VLOG
(
3
)
<<
"before tensor copy"
;
//
VLOG(3) << "before tensor copy";
if
(
op
->
Type
()
==
"batch_norm"
&&
platform
::
is_gpu_place
(
place_
))
{
//
if(op->Type() == "batch_norm" && platform::is_gpu_place(place_)) {
VLOG
(
3
)
<<
"op "
<<
op
->
Type
()
<<
" output var "
<<
var_name
<<
" "
<<
tensor
->
numel
();
//
VLOG(3) << "op " << op->Type() << " output var " << var_name << " " << tensor->numel();
tensor
->
mutable_data
<
float
>
(
place_
);
//
tensor->mutable_data<float>(place_);
framework
::
TensorCopy
(
*
tensor
,
platform
::
CPUPlace
(),
dev_ctx
,
&
check
);
//
framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
}
else
{
//
} else {
framework
::
TensorCopy
(
*
tensor
,
platform
::
CPUPlace
(),
dev_ctx
,
&
check
);
//
framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
}
//
}
VLOG
(
3
)
<<
"after tensor copy"
;
//
VLOG(3) << "after tensor copy";
float
sum
=
.0
;
//
float sum = .0;
for
(
size_t
i
=
0
;
i
<
check
.
numel
();
++
i
)
{
//
for(size_t i=0; i < check.numel(); ++i) {
if
(
std
::
type_index
(
check
.
type
())
==
std
::
type_index
(
typeid
(
int64_t
)))
{
//
if(std::type_index(check.type()) == std::type_index(typeid(int64_t))) {
sum
+=
static_cast
<
float
>
(
check
.
data
<
int64_t
>
()[
i
]);
//
sum += static_cast<float>(check.data<int64_t>()[i]);
}
else
{
//
} else {
sum
+=
check
.
data
<
float
>
()[
i
];
//
sum += check.data<float>()[i];
}
//
}
}
//
}
VLOG
(
3
)
<<
"op "
<<
op
->
Type
()
<<
" output var "
<<
var_name
<<
" sum "
<<
sum
;
//
VLOG(3) << "op " << op->Type() << " output var " << var_name << " sum " << sum;
}
//
}
}
//
}
VLOG
(
3
)
<<
"after checking result"
;
//
VLOG(3) << "after checking result";
if
(
local_scope
!=
scope
)
{
if
(
local_scope
!=
scope
)
{
scope
->
DeleteScope
(
local_scope
);
scope
->
DeleteScope
(
local_scope
);
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
09409bad
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <algorithm>
#include <algorithm>
#include <fstream>
#include <map>
#include <map>
#include <set>
#include <set>
#include <sstream>
#include <sstream>
...
@@ -88,6 +89,7 @@ bool NativePaddlePredictor::Init(
...
@@ -88,6 +89,7 @@ bool NativePaddlePredictor::Init(
VLOG
(
3
)
<<
config_
.
model_dir
;
VLOG
(
3
)
<<
config_
.
model_dir
;
inference_program_
=
paddle
::
inference
::
Load
(
executor_
.
get
(),
scope_
.
get
(),
inference_program_
=
paddle
::
inference
::
Load
(
executor_
.
get
(),
scope_
.
get
(),
config_
.
model_dir
);
config_
.
model_dir
);
VLOG
(
3
)
<<
"load model finish"
;
VLOG
(
3
)
<<
"load model finish"
;
}
else
if
(
!
config_
.
prog_file
.
empty
()
&&
!
config_
.
param_file
.
empty
())
{
}
else
if
(
!
config_
.
prog_file
.
empty
()
&&
!
config_
.
param_file
.
empty
())
{
// All parameters are saved in a single file.
// All parameters are saved in a single file.
...
@@ -100,6 +102,31 @@ bool NativePaddlePredictor::Init(
...
@@ -100,6 +102,31 @@ bool NativePaddlePredictor::Init(
VLOG
(
3
)
<<
"scope_"
;
VLOG
(
3
)
<<
"scope_"
;
inference_program_
=
paddle
::
inference
::
Load
(
inference_program_
=
paddle
::
inference
::
Load
(
executor_
.
get
(),
scope_
.
get
(),
config_
.
prog_file
,
config_
.
param_file
);
executor_
.
get
(),
scope_
.
get
(),
config_
.
prog_file
,
config_
.
param_file
);
// VLOG(3) << "modify the program!";
// {
// std::ofstream ofs("program.txt", std::ios::out);
// std::string s = inference_program_->Proto()->SerializeAsString();
// ofs.write(s.data(), s.size());
// ofs.close();
// }
auto
&
block
=
inference_program_
->
Block
(
0
);
for
(
auto
*
op_desc
:
block
.
AllOps
())
{
if
(
op_desc
->
HasAttr
(
"use_cudnn"
))
{
op_desc
->
SetAttr
(
"use_cudnn"
,
false
);
}
if
(
op_desc
->
HasAttr
(
"workspace_size_MB"
))
{
op_desc
->
SetAttr
(
"workspace_size_MB"
,
0
);
}
}
// {
// std::ofstream ofs("after_program.txt", std::ios::out);
// std::string s = inference_program_->Proto()->SerializeAsString();
// ofs.write(s.data(), s.size());
// ofs.close();
// }
VLOG
(
3
)
<<
"load program finish"
;
VLOG
(
3
)
<<
"load program finish"
;
}
else
{
}
else
{
LOG
(
ERROR
)
<<
"fail to load inference model."
;
LOG
(
ERROR
)
<<
"fail to load inference model."
;
...
@@ -306,9 +333,10 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
...
@@ -306,9 +333,10 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
if
(
config
.
use_gpu
)
{
if
(
config
.
use_gpu
)
{
// 1. GPU memeroy
// 1. GPU memeroy
VLOG
(
3
)
<<
"before check"
;
VLOG
(
3
)
<<
"before check"
;
// PADDLE_ENFORCE_GT(
// PADDLE_ENFORCE_GT(
// config.fraction_of_gpu_memory, 0.f,
// config.fraction_of_gpu_memory, 0.f,
// "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
// "fraction_of_gpu_memory in the config should be set to range (0.,
// 1.]");
VLOG
(
3
)
<<
"failed on first"
;
VLOG
(
3
)
<<
"failed on first"
;
PADDLE_ENFORCE_GE
(
config
.
device
,
0
,
"Invalid device id %d"
,
config
.
device
);
PADDLE_ENFORCE_GE
(
config
.
device
,
0
,
"Invalid device id %d"
,
config
.
device
);
VLOG
(
3
)
<<
"after flags"
;
VLOG
(
3
)
<<
"after flags"
;
...
...
paddle/fluid/inference/api/demo_ci/CMakeLists.txt
浏览文件 @
09409bad
...
@@ -77,7 +77,7 @@ add_executable(real_data_icnet_tester real_data_icnet_tester.cc)
...
@@ -77,7 +77,7 @@ add_executable(real_data_icnet_tester real_data_icnet_tester.cc)
# add_library(${DEMO_NAME} SHARED ${DEMO_NAME}.cc)
# add_library(${DEMO_NAME} SHARED ${DEMO_NAME}.cc)
# add_executable(test test.cc)
# add_executable(test test.cc)
#
add_executable(thread_icnet_test thread_icnet_test.cc)
add_executable
(
thread_icnet_test thread_icnet_test.cc
)
if
(
WITH_MKL
)
if
(
WITH_MKL
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/mklml/include"
)
include_directories
(
"
${
PADDLE_LIB
}
/third_party/install/mklml/include"
)
...
@@ -130,6 +130,5 @@ target_link_libraries(real_data_icnet_tester ${DEPS})
...
@@ -130,6 +130,5 @@ target_link_libraries(real_data_icnet_tester ${DEPS})
# target_link_libraries(${DEMO_NAME} ${DEPS})
# target_link_libraries(${DEMO_NAME} ${DEPS})
# target_link_libraries(test ${DEMO_NAME} )
# target_link_libraries(test ${DEMO_NAME} )
#
target_link_libraries(thread_icnet_test ${DEPS})
target_link_libraries
(
thread_icnet_test
${
DEPS
}
)
# target_compile_definitions(${DEMO_NAME} PRIVATE "API_DEFINITION")
# target_compile_definitions(${DEMO_NAME} PRIVATE "API_DEFINITION")
paddle/fluid/inference/api/demo_ci/real_data_icnet_tester.cc
浏览文件 @
09409bad
...
@@ -25,10 +25,13 @@ namespace paddle {
...
@@ -25,10 +25,13 @@ namespace paddle {
NativeConfig
GetConfig
()
{
NativeConfig
GetConfig
()
{
NativeConfig
config
;
NativeConfig
config
;
// config.model_dir = FLAGS_dirname;
// config.model_dir = FLAGS_dirname;
config
.
prog_file
=
"hs_lb_without_bn/__model__"
;
config
.
prog_file
=
"hs_lb_without_bn/__model__"
;
config
.
param_file
=
"hs_lb_without_bn/__params__"
;
config
.
param_file
=
"hs_lb_without_bn/__params__"
;
config
.
fraction_of_gpu_memory
=
0.8
;
// config.prog_file = "hs_lb_without_bn_cuda/__model__";
// config.param_file = "hs_lb_without_bn_cuda/__params__";
config
.
fraction_of_gpu_memory
=
0.0
;
config
.
use_gpu
=
true
;
config
.
use_gpu
=
true
;
config
.
device
=
0
;
config
.
device
=
0
;
return
config
;
return
config
;
...
@@ -43,13 +46,12 @@ double time_diff(Time t1, Time t2) {
...
@@ -43,13 +46,12 @@ double time_diff(Time t1, Time t2) {
return
counter
.
count
()
/
1000.0
;
return
counter
.
count
()
/
1000.0
;
}
}
void
test_naive
(
int
batch_size
)
{
void
test_naive
(
int
batch_size
){
NativeConfig
config
=
GetConfig
();
NativeConfig
config
=
GetConfig
();
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
int
height
=
449
;
int
height
=
449
;
int
width
=
581
;
int
width
=
581
;
// =============read file list =============
// =============read file list =============
std
::
ifstream
infile
(
"new_file.list"
);
std
::
ifstream
infile
(
"new_file.list"
);
std
::
string
temp_s
;
std
::
string
temp_s
;
...
@@ -62,61 +64,65 @@ void test_naive(int batch_size){
...
@@ -62,61 +64,65 @@ void test_naive(int batch_size){
// size_t file_num = all_files.size();
// size_t file_num = all_files.size();
infile
.
close
();
infile
.
close
();
// =============read file list =============
// =============read file list =============
for
(
size_t
f_k
=
0
;
f_k
<
1
;
f_k
++
)
{
for
(
size_t
f_k
=
0
;
f_k
<
1
;
f_k
++
)
{
std
::
ifstream
in_img
(
all_files
[
f_k
]);
std
::
ifstream
in_img
(
all_files
[
f_k
]);
std
::
cout
<<
all_files
[
f_k
]
<<
std
::
endl
;
std
::
cout
<<
all_files
[
f_k
]
<<
std
::
endl
;
float
temp_v
;
float
temp_v
;
float
sum_n
=
0.0
;
float
sum_n
=
0.0
;
std
::
vector
<
float
>
data
;
std
::
vector
<
float
>
data
;
while
(
!
in_img
.
eof
())
{
while
(
!
in_img
.
eof
())
{
in_img
>>
temp_v
;
in_img
>>
temp_v
;
data
.
push_back
(
float
(
temp_v
));
data
.
push_back
(
float
(
temp_v
));
// std::cout << temp_v << " ";
// std::cout << temp_v << " ";
sum_n
+=
temp_v
;
sum_n
+=
temp_v
;
}
}
in_img
.
close
();
in_img
.
close
();
std
::
cout
<<
"sum: "
<<
sum_n
<<
std
::
endl
;
std
::
cout
<<
"sum: "
<<
sum_n
<<
std
::
endl
;
PaddleTensor
tensor
;
tensor
.
shape
=
std
::
vector
<
int
>
({
batch_size
,
3
,
height
,
width
});
tensor
.
data
.
Resize
(
sizeof
(
float
)
*
batch_size
*
3
*
height
*
width
);
std
::
copy
(
data
.
begin
(),
data
.
end
(),
static_cast
<
float
*>
(
tensor
.
data
.
data
()));
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
std
::
vector
<
PaddleTensor
>
paddle_tensor_feeds
(
1
,
tensor
);
PaddleTensor
tensor_out
;
std
::
vector
<
PaddleTensor
>
outputs
(
1
,
tensor_out
)
;
PaddleTensor
tensor
;
// predictor->Run(paddle_tensor_feeds, &outputs, batch_size
);
tensor
.
shape
=
std
::
vector
<
int
>
({
batch_size
,
3
,
height
,
width
}
);
std
::
cout
<<
"start predict123:"
<<
std
::
endl
;
tensor
.
data
.
Resize
(
sizeof
(
float
)
*
batch_size
*
3
*
height
*
width
)
;
auto
time1
=
time
();
std
::
copy
(
data
.
begin
(),
data
.
end
(),
static_cast
<
float
*>
(
tensor
.
data
.
data
()));
for
(
size_t
i
=
0
;
i
<
1
;
i
++
)
{
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
predictor
->
Run
(
paddle_tensor_feeds
,
&
outputs
,
batch_size
);
std
::
vector
<
PaddleTensor
>
paddle_tensor_feeds
(
1
,
tensor
);
}
PaddleTensor
tensor_out
;
auto
time2
=
time
();
std
::
vector
<
PaddleTensor
>
outputs
(
1
,
tensor_out
);
std
::
ofstream
ofresult
(
"naive_test_result.txt"
,
std
::
ios
::
app
);
// predictor->Run(paddle_tensor_feeds, &outputs, batch_size);
std
::
cout
<<
"start predict123:"
<<
std
::
endl
;
auto
time1
=
time
();
int
steps
=
100
;
for
(
size_t
i
=
0
;
i
<
steps
;
i
++
)
{
if
(
i
==
5
)
time1
=
time
();
predictor
->
Run
(
paddle_tensor_feeds
,
&
outputs
,
batch_size
);
}
std
::
cout
<<
"batch: "
<<
batch_size
<<
" predict cost: "
<<
time_diff
(
time1
,
time2
)
/
1000.0
<<
"ms"
<<
std
::
endl
;
auto
time2
=
time
();
std
::
cout
<<
outputs
.
size
()
<<
std
::
endl
;
std
::
ofstream
ofresult
(
"naive_test_result.txt"
,
std
::
ios
::
app
);
int64_t
*
data_o
=
static_cast
<
int64_t
*>
(
outputs
[
0
].
data
.
data
());
std
::
cout
<<
"batch: "
<<
batch_size
<<
" predict cost: "
<<
time_diff
(
time1
,
time2
)
/
steps
<<
"ms"
<<
std
::
endl
;
std
::
cout
<<
outputs
.
size
()
<<
std
::
endl
;
int64_t
*
data_o
=
static_cast
<
int64_t
*>
(
outputs
[
0
].
data
.
data
());
int64_t
sum_out
=
0
;
int64_t
sum_out
=
0
;
for
(
size_t
j
=
0
;
j
<
outputs
[
0
].
data
.
length
()
/
sizeof
(
int64_t
);
++
j
)
{
for
(
size_t
j
=
0
;
j
<
outputs
[
0
].
data
.
length
()
/
sizeof
(
int64_t
);
++
j
)
{
ofresult
<<
std
::
to_string
(
data_o
[
j
])
<<
" "
;
ofresult
<<
std
::
to_string
(
data_o
[
j
])
<<
" "
;
sum_out
+=
data_o
[
j
];
sum_out
+=
data_o
[
j
];
}
}
std
::
cout
<<
"sum_out "
<<
sum_out
<<
std
::
endl
;
std
::
cout
<<
"sum_out "
<<
sum_out
<<
std
::
endl
;
ofresult
<<
std
::
endl
;
ofresult
<<
std
::
endl
;
ofresult
.
close
();
ofresult
.
close
();
}
}
}
}
}
// namespace paddle
}
// namespace paddle
int
main
(
int
argc
,
char
**
argv
)
{
int
main
(
int
argc
,
char
**
argv
)
{
// google::ParseCommandLineFlags(&argc, &argv, true);
// google::ParseCommandLineFlags(&argc, &argv, true);
paddle
::
test_naive
(
1
<<
0
);
paddle
::
test_naive
(
1
<<
0
);
return
0
;
return
0
;
}
}
paddle/fluid/inference/api/demo_ci/thread_icnet_test.cc
浏览文件 @
09409bad
...
@@ -20,22 +20,21 @@
...
@@ -20,22 +20,21 @@
#include <chrono>
#include <chrono>
#include <fstream>
#include <fstream>
#include <iostream>
#include <iostream>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include <thread> // NOLINT
#include <thread> // NOLINT
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#define ASSERT_TRUE(x) x
#define ASSERT_TRUE(x) x
#define ASSERT_EQ(x, y) assert(x == y)
#define ASSERT_EQ(x, y) assert(x == y)
namespace
paddle
{
// DEFINE_string(dirname, "./LB_icnet_model",
// DEFINE_string(dirname, "./LB_icnet_model",
// "Directory of the inference model.");
// "Directory of the inference model.");
namespace
paddle
{
NativeConfig
GetConfig
()
{
NativeConfig
GetConfig
()
{
NativeConfig
config
;
NativeConfig
config
;
config
.
prog_file
=
"./dzh_lb
/__model__"
;
config
.
prog_file
=
"./hs_lb_without_bn_cuda
/__model__"
;
config
.
param_file
=
"./dzh_lb
/__params__"
;
config
.
param_file
=
"./hs_lb_without_bn_cuda
/__params__"
;
config
.
fraction_of_gpu_memory
=
0.
08
;
config
.
fraction_of_gpu_memory
=
0.
5
;
config
.
use_gpu
=
true
;
config
.
use_gpu
=
true
;
config
.
device
=
0
;
config
.
device
=
0
;
return
config
;
return
config
;
...
@@ -50,56 +49,84 @@ double time_diff(Time t1, Time t2) {
...
@@ -50,56 +49,84 @@ double time_diff(Time t1, Time t2) {
return
counter
.
count
()
/
1000.0
;
return
counter
.
count
()
/
1000.0
;
}
}
void
test_naive
(
int
batch_size
,
std
::
string
model_path
){
void
test_naive
(
int
batch_size
,
std
::
string
model_path
)
{
PaddlePredictor
*
pres
[
2
];
NativeConfig
config
=
GetConfig
();
NativeConfig
config
=
GetConfig
();
// config.model_dir = model_path;
auto
predictor0
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
auto
predictor1
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
pres
[
0
]
=
predictor0
.
get
();
pres
[
1
]
=
predictor1
.
get
();
int
height
=
449
;
int
height
=
449
;
int
width
=
581
;
int
width
=
581
;
std
::
vector
<
float
>
data
;
std
::
vector
<
float
>
data
;
for
(
int
i
=
0
;
i
<
3
*
height
*
width
;
i
++
)
{
for
(
int
i
=
0
;
i
<
3
*
height
*
width
;
++
i
)
{
data
.
push_back
(
0
);
data
.
push_back
(
0.0
);
}
PaddleTensor
tensor
;
tensor
.
shape
=
std
::
vector
<
int
>
({
batch_size
,
3
,
height
,
width
});
tensor
.
data
.
Resize
(
sizeof
(
float
)
*
batch_size
*
3
*
height
*
width
);
std
::
copy
(
data
.
begin
(),
data
.
end
(),
static_cast
<
float
*>
(
tensor
.
data
.
data
()));
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
std
::
vector
<
PaddleTensor
>
paddle_tensor_feeds
(
1
,
tensor
);
constexpr
int
num_jobs
=
5
;
// each job run 1 batch
std
::
vector
<
std
::
thread
>
threads
;
for
(
int
tid
=
0
;
tid
<
num_jobs
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
auto
predictor
=
pres
[
tid
];
std
::
vector
<
PaddleTensor
>
local_outputs
;
for
(
size_t
i
=
0
;
i
<
1000
;
i
++
)
{
ASSERT_TRUE
(
predictor
->
Run
(
paddle_tensor_feeds
,
&
local_outputs
));
std
::
cout
<<
"run: "
<<
tid
<<
std
::
endl
;
}
ASSERT_EQ
(
local_outputs
.
size
(),
1UL
);
});
}
}
for
(
int
i
=
0
;
i
<
num_jobs
;
++
i
)
{
threads
[
i
].
join
();
}
}
//TEST(alexnet, naive) {
// read data
// test_naive(1 << 0, "./trt_models/vgg19");
// std::ifstream infile("new_file.list");
//}
// std::string temp_s;
// std::vector<std::string> all_files;
// while (!infile.eof()) {
// infile >> temp_s;
// all_files.push_back(temp_s);
// }
}
// namespace paddle
// // size_t file_num = all_files.size();
// infile.close();
// // =============read file list =============
// for (size_t f_k = 0; f_k < 1; f_k++) {
// std::ifstream in_img(all_files[f_k]);
// std::cout << all_files[f_k] << std::endl;
// float temp_v;
int
main
(
int
argc
,
char
**
argv
)
{
// float sum_n = 0.0;
paddle
::
test_naive
(
1
<<
0
,
""
);
// std::vector<float> data;
}
// while (!in_img.eof()) {
// in_img >> temp_v;
// data.push_back(float(temp_v));
// sum_n += temp_v;
// }
// in_img.close();
// std::cout << "sum: " << sum_n << std::endl;
PaddleTensor
tensor
;
tensor
.
shape
=
std
::
vector
<
int
>
({
batch_size
,
3
,
height
,
width
});
tensor
.
data
.
Resize
(
sizeof
(
float
)
*
batch_size
*
3
*
height
*
width
);
std
::
copy
(
data
.
begin
(),
data
.
end
(),
static_cast
<
float
*>
(
tensor
.
data
.
data
()));
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
std
::
vector
<
PaddleTensor
>
paddle_tensor_feeds
(
1
,
tensor
);
constexpr
int
num_jobs
=
2
;
// each job run 1 batch
std
::
vector
<
std
::
thread
>
threads
;
for
(
int
tid
=
0
;
tid
<
num_jobs
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
PaddleTensor
tensor_out
;
std
::
vector
<
PaddleTensor
>
outputs
(
1
,
tensor_out
);
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
for
(
size_t
i
=
0
;
i
<
1000
;
i
++
)
{
ASSERT_TRUE
(
predictor
->
Run
(
paddle_tensor_feeds
,
&
outputs
));
VLOG
(
0
)
<<
"tid : "
<<
tid
<<
" run: "
<<
i
<<
"finished"
;
//std::cout <<"tid : " << tid << " run: " << i << "finished" << std::endl;
ASSERT_EQ
(
outputs
.
size
(),
1UL
);
// int64_t* data_o = static_cast<int64_t*>(outputs[0].data.data());
// int64_t sum_out = 0;
// for (size_t j = 0; j < outputs[0].data.length() / sizeof(int64_t);
// ++j) {
// sum_out += data_o[j];
// }
// std::cout << "tid : " << tid << "pass : " << i << " " << sum_out
// << std::endl;
}
});
}
for
(
int
i
=
0
;
i
<
num_jobs
;
++
i
)
{
threads
[
i
].
join
();
}
}
// }
}
// namespace paddle
int
main
(
int
argc
,
char
**
argv
)
{
paddle
::
test_naive
(
1
<<
0
,
""
);
return
0
;
}
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
09409bad
...
@@ -163,7 +163,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -163,7 +163,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
VLOG
(
3
)
<<
"after get workspace"
;
VLOG
(
3
)
<<
"after get workspace"
;
// Allocate on GPU memory
// Allocate on GPU memory
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
workspace_size_in_bytes
=
1024
;
//
workspace_size_in_bytes = 1024;
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
VLOG
(
3
)
<<
"allocate memory"
;
VLOG
(
3
)
<<
"allocate memory"
;
// ------------------- cudnn conv forward ---------------------
// ------------------- cudnn conv forward ---------------------
...
@@ -324,7 +324,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -324,7 +324,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// Already on GPU
// Already on GPU
void
*
cudnn_workspace
=
nullptr
;
void
*
cudnn_workspace
=
nullptr
;
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
workspace_size_in_bytes
=
1024
;
//
workspace_size_in_bytes = 1024;
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
// ------------------- cudnn conv backward data ---------------------
// ------------------- cudnn conv backward data ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
...
...
paddle/fluid/operators/load_combine_op.cc
浏览文件 @
09409bad
...
@@ -62,18 +62,18 @@ class LoadCombineOp : public framework::OperatorBase {
...
@@ -62,18 +62,18 @@ class LoadCombineOp : public framework::OperatorBase {
VLOG
(
3
)
<<
"before deserialization"
;
VLOG
(
3
)
<<
"before deserialization"
;
// Get data from fin to tensor
// Get data from fin to tensor
DeserializeFromStream
(
fin
,
tensor
,
dev_ctx
);
DeserializeFromStream
(
fin
,
tensor
,
dev_ctx
);
VLOG
(
3
)
<<
"after deserialization"
;
//
VLOG(3) << "after deserialization";
framework
::
Tensor
check
;
//
framework::Tensor check;
framework
::
TensorCopy
(
*
tensor
,
platform
::
CPUPlace
(),
dev_ctx
,
&
check
);
//
framework::TensorCopy(*tensor, platform::CPUPlace(), dev_ctx, &check);
float
sum
=
.0
;
//
float sum = .0;
for
(
size_t
i
=
0
;
i
<
check
.
numel
();
++
i
)
{
//
for(size_t i=0; i < check.numel(); ++i) {
if
(
std
::
type_index
(
check
.
type
())
==
std
::
type_index
(
typeid
(
int64_t
)))
{
//
if(std::type_index(check.type()) == std::type_index(typeid(int64_t))) {
sum
+=
static_cast
<
float
>
(
check
.
data
<
int64_t
>
()[
i
]);
//
sum += static_cast<float>(check.data<int64_t>()[i]);
}
else
{
//
} else {
sum
+=
check
.
data
<
float
>
()[
i
];
//
sum += check.data<float>()[i];
}
//
}
}
//
}
VLOG
(
3
)
<<
"sum result"
<<
sum
;
//
VLOG(3) << "sum result" << sum;
auto
in_dtype
=
framework
::
ToDataType
(
tensor
->
type
());
auto
in_dtype
=
framework
::
ToDataType
(
tensor
->
type
());
auto
out_dtype
=
auto
out_dtype
=
load_as_fp16
?
framework
::
proto
::
VarType
::
FP16
:
in_dtype
;
load_as_fp16
?
framework
::
proto
::
VarType
::
FP16
:
in_dtype
;
...
...
paddle/fluid/operators/top_k_op.cc
浏览文件 @
09409bad
...
@@ -50,7 +50,7 @@ class TopkOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -50,7 +50,7 @@ class TopkOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) The input of Topk op"
);
AddInput
(
"X"
,
"(Tensor) The input of Topk op"
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of Topk op"
)
.
Reuse
(
"X"
)
;
AddOutput
(
"Out"
,
"(Tensor) The output tensor of Topk op"
);
AddOutput
(
"Indices"
,
"(Tensor) The indices of Topk elements of input"
);
AddOutput
(
"Indices"
,
"(Tensor) The indices of Topk elements of input"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Top K operator
Top K operator
...
...
paddle/fluid/operators/top_k_op.cu
浏览文件 @
09409bad
...
@@ -256,36 +256,65 @@ __device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
...
@@ -256,36 +256,65 @@ __device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
* 3. go to the second setp, until one thread's topk value is null;
* 3. go to the second setp, until one thread's topk value is null;
* 4. go to the first setp, until get the topk value.
* 4. go to the first setp, until get the topk value.
*/
*/
template
<
typename
T
,
int
MaxLength
,
int
BlockSize
>
template
<
typename
T
,
int
MaxLength
,
int
BlockSize
>
__global__
void
KeMatrixTopK
(
T
*
output
,
int
output_stride
,
int64_t
*
indices
,
__global__
void
KeMatrixTopK
(
T
*
output
,
int
output_stride
,
int64_t
*
indices
,
const
T
*
src
,
int
lds
,
int
dim
,
int
k
)
{
const
T
*
src
,
int
lds
,
int
dim
,
int
k
,
int
grid_dim
,
int
num
)
{
__shared__
Pair
<
T
>
sh_topk
[
BlockSize
];
__shared__
Pair
<
T
>
sh_topk
[
BlockSize
];
__shared__
int
maxid
[
BlockSize
/
2
];
const
int
tid
=
threadIdx
.
x
;
const
int
tid
=
threadIdx
.
x
;
const
int
warp
=
threadIdx
.
x
/
32
;
const
int
warp
=
threadIdx
.
x
/
32
;
output
+=
blockIdx
.
x
*
output_stride
;
indices
+=
blockIdx
.
x
*
k
;
Pair
<
T
>
topk
[
MaxLength
];
const
int
bid
=
blockIdx
.
x
;
int
beam
=
MaxLength
;
for
(
int
i
=
bid
;
i
<
num
;
i
+=
grid_dim
)
{
Pair
<
T
>
max
;
int
top_num
=
k
;
bool
is_empty
=
false
;
__shared__
int
maxid
[
BlockSize
/
2
];
bool
firststep
=
true
;
T
*
out
=
output
+
i
*
output_stride
;
int64_t
*
inds
=
indices
+
i
*
k
;
Pair
<
T
>
topk
[
MaxLength
];
int
beam
=
MaxLength
;
Pair
<
T
>
max
;
bool
is_empty
=
false
;
bool
firststep
=
true
;
for
(
int
j
=
0
;
j
<
MaxLength
;
j
++
)
{
topk
[
j
].
set
(
-
INFINITY
,
-
1
);
}
while
(
top_num
)
{
ThreadGetTopK
<
T
,
MaxLength
,
BlockSize
>
(
topk
,
&
beam
,
k
,
src
+
i
*
lds
,
&
firststep
,
&
is_empty
,
&
max
,
dim
,
tid
);
for
(
int
k
=
0
;
k
<
MaxLength
;
k
++
)
{
sh_topk
[
tid
]
=
topk
[
0
];
topk
[
k
].
set
(
-
INFINITY
,
-
1
);
BlockReduce
<
T
,
MaxLength
,
BlockSize
>
(
sh_topk
,
maxid
,
topk
,
&
out
,
&
inds
,
&
beam
,
&
top_num
,
tid
,
warp
);
}
}
}
while
(
k
)
{
}
ThreadGetTopK
<
T
,
MaxLength
,
BlockSize
>
(
topk
,
&
beam
,
k
,
src
+
blockIdx
.
x
*
lds
,
&
firststep
,
inline
static
int
GetDesiredBlockDim
(
int
dim
)
{
&
is_empty
,
&
max
,
dim
,
tid
);
if
(
dim
>
128
)
{
return
256
;
sh_topk
[
tid
]
=
topk
[
0
];
}
else
if
(
dim
>
64
)
{
BlockReduce
<
T
,
MaxLength
,
BlockSize
>
(
sh_topk
,
maxid
,
topk
,
&
output
,
return
128
;
&
indices
,
&
beam
,
&
k
,
tid
,
warp
);
}
else
if
(
dim
>
32
)
{
return
64
;
}
else
{
return
32
;
}
}
}
}
#define FIXED_BLOCK_DIM_BASE(dim, ...) \
case (dim): { \
constexpr auto kBlockDim = (dim); \
__VA_ARGS__; \
} break
#define FIXED_BLOCK_DIM(...) \
FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)
template
<
typename
T
>
template
<
typename
T
>
class
TopkOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
class
TopkOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -298,30 +327,38 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -298,30 +327,38 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
size_t
k
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"k"
));
size_t
k
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"k"
));
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// FIXME(typhoonzero): data is always converted to type T?
// FIXME(typhoonzero): data is always converted to type T?
int64_t
*
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
int64_t
*
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
size_t
input_height
=
input
->
dims
()[
0
];
framework
::
DDim
inputdims
=
input
->
dims
();
size_t
input_width
=
input
->
dims
()[
1
];
const
size_t
input_height
=
framework
::
product
(
framework
::
slice_ddim
(
inputdims
,
0
,
inputdims
.
size
()
-
1
));
const
size_t
input_width
=
inputdims
[
inputdims
.
size
()
-
1
];
if
(
k
>
input_width
)
k
=
input_width
;
if
(
k
>
input_width
)
k
=
input_width
;
// NOTE: pass lds and dim same to input width.
// NOTE: pass lds and dim same to input width.
// NOTE: old matrix implementation of stride is different to eigen.
// NOTE: old matrix implementation of stride is different to eigen.
// TODO(typhoonzero): refine this kernel.
// TODO(typhoonzero): refine this kernel.
dim3
threads
(
256
,
1
);
const
int
kMaxHeight
=
2048
;
dim3
grid
(
input_height
,
1
);
int
gridx
=
input_height
<
kMaxHeight
?
input_height
:
kMaxHeight
;
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
KeMatrixTopK
<
T
,
5
,
256
><<<
switch
(
GetDesiredBlockDim
(
input_width
))
{
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
FIXED_BLOCK_DIM
(
ctx
.
device_context
())
KeMatrixTopK
<
T
,
5
,
.
stream
()
>>>
(
kBlockDim
><<<
gridx
,
kBlockDim
,
0
,
dev_ctx
.
stream
()
>>>
(
output_data
,
output
->
dims
()[
1
],
indices_data
,
input_data
,
input_width
,
output_data
,
k
,
indices_data
,
input_data
,
input_width
,
input_width
,
static_cast
<
int
>
(
k
));
input_width
,
static_cast
<
int
>
(
k
),
gridx
,
input_height
));
default:
PADDLE_THROW
(
"Error"
);
}
}
}
};
};
#undef FIXED_BLOCK_DIM_BASE
#undef FIXED_BLOCK_DIM
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
...
paddle/fluid/operators/top_k_op.h
浏览文件 @
09409bad
...
@@ -34,7 +34,6 @@ class TopkKernel : public framework::OpKernel<T> {
...
@@ -34,7 +34,6 @@ class TopkKernel : public framework::OpKernel<T> {
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// Get the top k elements of each row of input tensor
// Get the top k elements of each row of input tensor
// FIXME: only deal with matrix(2d tensor).
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
indices
=
ctx
.
Output
<
Tensor
>
(
"Indices"
);
auto
*
indices
=
ctx
.
Output
<
Tensor
>
(
"Indices"
);
...
@@ -44,8 +43,6 @@ class TopkKernel : public framework::OpKernel<T> {
...
@@ -44,8 +43,6 @@ class TopkKernel : public framework::OpKernel<T> {
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
*
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
int64_t
*
indices_data
=
indices
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
eg_input
=
EigenMatrix
<
T
>::
From
(
*
input
);
// reshape input to a flattern matrix(like flat_inner_dims)
// reshape input to a flattern matrix(like flat_inner_dims)
framework
::
DDim
inputdims
=
input
->
dims
();
framework
::
DDim
inputdims
=
input
->
dims
();
const
size_t
row
=
framework
::
product
(
const
size_t
row
=
framework
::
product
(
...
@@ -53,7 +50,7 @@ class TopkKernel : public framework::OpKernel<T> {
...
@@ -53,7 +50,7 @@ class TopkKernel : public framework::OpKernel<T> {
const
size_t
col
=
inputdims
[
inputdims
.
size
()
-
1
];
const
size_t
col
=
inputdims
[
inputdims
.
size
()
-
1
];
Eigen
::
DSizes
<
int
,
2
>
flat2dims
(
row
,
col
);
Eigen
::
DSizes
<
int
,
2
>
flat2dims
(
row
,
col
);
// NOTE: eigen shape doesn't affect paddle tensor.
// NOTE: eigen shape doesn't affect paddle tensor.
eg_input
.
reshape
(
flat2dims
);
auto
eg_input
=
EigenMatrix
<
T
>::
Reshape
(
*
input
,
inputdims
.
size
()
-
1
);
#ifdef PADDLE_WITH_MKLML
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#pragma omp parallel for
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录