Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
092a2b14
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
092a2b14
编写于
2月 05, 2021
作者:
A
Adam Osewski
提交者:
GitHub
2月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
More UT for LayerNormFuse pass (#30891)
* Additionally change to not throw error from inside pass.
上级
a80fe67f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
426 addition
and
192 deletion
+426
-192
paddle/fluid/framework/ir/layer_norm_fuse_pass.cc
paddle/fluid/framework/ir/layer_norm_fuse_pass.cc
+79
-55
paddle/fluid/framework/ir/layer_norm_fuse_pass_tester.cc
paddle/fluid/framework/ir/layer_norm_fuse_pass_tester.cc
+326
-130
paddle/fluid/framework/ir/pass_test_util.cc
paddle/fluid/framework/ir/pass_test_util.cc
+15
-6
paddle/fluid/framework/ir/pass_test_util.h
paddle/fluid/framework/ir/pass_test_util.h
+6
-1
未找到文件。
paddle/fluid/framework/ir/layer_norm_fuse_pass.cc
浏览文件 @
092a2b14
...
...
@@ -12,7 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "paddle/fluid/framework/framework.pb.h"
...
...
@@ -22,6 +21,7 @@
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/pretty_log.h"
#include "paddle/fluid/string/printf.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -30,34 +30,57 @@ namespace ir {
// cpplint complaints (wrong!) for not included <string> header in below line.
using
string
::
PrettyLogDetail
;
// NOLINT
#define CHECK_TRUE(expr, err_msg) \
do { \
int e_ = (expr); \
if (!e_) { \
VLOG(4) << err_msg; \
return; \
} \
} while (0)
#define EXPECT_TRUE(expr, err_msg) \
do { \
int e_ = (expr); \
if (!e_) { \
VLOG(4) << err_msg; \
return false; \
} \
} while (0)
namespace
{
void
validateReduceOpAttrs
(
const
Node
*
node
,
const
std
::
string
&
name
)
{
bool
validateReduceOpAttrs
(
const
Node
*
node
,
const
std
::
string
&
name
)
{
const
auto
*
op
=
node
->
Op
();
if
(
op
->
HasAttr
(
"dim"
))
{
auto
dims
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op
->
GetAttr
(
"dim"
));
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
1
,
platform
::
errors
::
PreconditionNotMet
(
"The LayerNorm fusion "
,
name
,
" reduction must happen only over "
"single dimension."
));
PADDLE_ENFORCE_EQ
(
dims
.
front
(),
-
1
,
platform
::
errors
::
PreconditionNotMet
(
"The LayerNorm fusion "
,
name
,
" reduction must happen over last "
"dimension."
));
EXPECT_TRUE
(
dims
.
size
()
==
1
,
::
paddle
::
string
::
Sprintf
(
"The LayerNorm fusion %s reduction must happen only over single "
"dimension."
,
name
));
EXPECT_TRUE
(
dims
.
front
()
==
-
1
,
::
paddle
::
string
::
Sprintf
(
"The LayerNorm fusion %s reduction "
"must happen over last dimension."
,
name
));
}
if
(
op
->
HasAttr
(
"reduce_all"
))
{
PADDLE_ENFORCE
(
!
BOOST_GET_CONST
(
bool
,
op
->
GetAttr
(
"reduce_all"
)),
platform
::
errors
::
PreconditionNotMet
(
"The LayerNorm fusion "
,
name
,
" reduction must have "
"
\'
reduce_all
\'
attribute set to false."
));
EXPECT_TRUE
(
!
BOOST_GET_CONST
(
bool
,
op
->
GetAttr
(
"reduce_all"
)),
::
paddle
::
string
::
Sprintf
(
"The LayerNorm fusion %s"
"reduction must have
\'
reduce_all
\'
attribute set to false."
,
name
));
}
if
(
op
->
HasAttr
(
"keep_dim"
))
{
PADDLE_ENFORC
E
(
BOOST_GET_CONST
(
bool
,
op
->
GetAttr
(
"keep_dim"
)),
platform
::
errors
::
PreconditionNotMet
(
"The LayerNorm fusion "
,
name
,
" reduction must have "
"
\'
keep_dim
\'
attribute set to true."
));
EXPECT_TRU
E
(
BOOST_GET_CONST
(
bool
,
op
->
GetAttr
(
"keep_dim"
)),
::
paddle
::
string
::
Sprintf
(
"The LayerNorm fusion %s"
" reduction must have
\'
keep_dim
\'
attribute set to true."
,
name
));
}
return
true
;
}
void
setIntermediateOut
(
OpDesc
*
desc
,
const
std
::
string
&
out_name
,
...
...
@@ -129,48 +152,46 @@ void LayerNormFusePass::ApplyImpl(Graph* graph) const {
auto
*
eps_tensor
=
scope
->
FindVar
(
eps
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// ------------------ subgraph node's validation ---------------------------
PADDLE_ENFORCE_EQ
(
eps_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The LayerNorm divisor "
"epsilon value must be one-element tensor, but has %s "
"elements."
,
CHECK_TRUE
(
eps_tensor
->
numel
()
==
1
,
::
paddle
::
string
::
Sprintf
(
"The LayerNorm divisor epsilon value must be one-element tensor, "
"but has %s elements."
,
eps_tensor
->
numel
()));
PADDLE_ENFORCE_EQ
(
eps_tensor
->
type
(),
proto
::
VarType
::
FP32
,
platform
::
errors
::
InvalidArgument
(
"The LayerNorm divisor
"
"epsilon value
must be of FP32 data type, but is %s."
,
eps_tensor
->
type
()));
CHECK_TRUE
(
eps_tensor
->
type
()
==
proto
::
VarType
::
FP32
,
::
paddle
::
string
::
Sprintf
(
"The LayerNorm divisor epsilon value
"
"
must be of FP32 data type, but is %s."
,
eps_tensor
->
type
()));
const
auto
&
gamma_shape
=
gamma
->
Var
()
->
GetShape
();
const
auto
&
beta_shape
=
beta
->
Var
()
->
GetShape
();
const
auto
&
x_shape
=
x
->
Var
()
->
GetShape
();
int64_t
x_last_dim
=
x_shape
.
back
();
PADDLE_ENFORCE_EQ
(
gamma_shape
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The LayerNorm gamma "
"(scale) tensor shape must be one-dimensional, "
"but is %s."
,
gamma_shape
.
size
()));
PADDLE_ENFORCE_EQ
(
beta_shape
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"The LayerNorm beta "
"(shift) tensor shape must be one-dimensional, "
"but is %s."
,
beta_shape
.
size
()));
PADDLE_ENFORCE_EQ
(
beta_shape
,
gamma_shape
,
platform
::
errors
::
InvalidArgument
(
"The LayerNorm beta "
"and gamma tensors shapes' must be equal."
));
PADDLE_ENFORCE_EQ
(
gamma_shape
.
front
(),
x_last_dim
,
platform
::
errors
::
InvalidArgument
(
"The LayerNorm beta "
"and gamma tensors shapes' must be equal to the last "
"input's dimension size."
));
validateReduceOpAttrs
(
x_mean
,
"input mean"
);
validateReduceOpAttrs
(
std_dev
,
"std_dev mean"
);
CHECK_TRUE
(
gamma_shape
.
size
()
==
1
,
::
paddle
::
string
::
Sprintf
(
"The LayerNorm gamma (scale) tensor "
"shape must be one-dimensional, but is %s."
,
gamma_shape
.
size
()));
CHECK_TRUE
(
beta_shape
.
size
()
==
1
,
::
paddle
::
string
::
Sprintf
(
"The LayerNorm beta (shift) tensor "
"shape must be one-dimensional, but is %s."
,
beta_shape
.
size
()));
CHECK_TRUE
(
beta_shape
==
gamma_shape
,
::
paddle
::
string
::
Sprintf
(
"The LayerNorm beta and gamma tensors "
"shapes' must be equal."
));
CHECK_TRUE
(
gamma_shape
.
front
()
==
x_last_dim
,
::
paddle
::
string
::
Sprintf
(
"The LayerNorm beta and gamma tensors "
"shapes' must be equal to the last input's dimension size."
));
CHECK_TRUE
(
validateReduceOpAttrs
(
x_mean
,
"input mean"
),
"Validation of input mean node failed."
);
CHECK_TRUE
(
validateReduceOpAttrs
(
std_dev
,
"std_dev mean"
),
"Validation of standard deviation node failed."
);
// ------------------ op creation and placement ---------------------------
...
...
@@ -213,6 +234,9 @@ void LayerNormFusePass::ApplyImpl(Graph* graph) const {
}
// namespace framework
}
// namespace paddle
#undef CHECK_TRUE
#undef EXPECT_TRUE
REGISTER_PASS
(
layer_norm_fuse_pass
,
paddle
::
framework
::
ir
::
LayerNormFusePass
);
REGISTER_PASS_CAPABILITY
(
layer_norm_fuse_pass
)
.
AddCombination
(
...
...
paddle/fluid/framework/ir/layer_norm_fuse_pass_tester.cc
浏览文件 @
092a2b14
...
...
@@ -13,7 +13,10 @@
// limitations under the License.
#include <gtest/gtest.h>
#include <memory>
#include <vector>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/ir/layer_norm_fuse_pass.h"
#include "paddle/fluid/framework/ir/pass_test_util.h"
...
...
@@ -31,100 +34,153 @@ namespace ir {
namespace
{
ProgramDesc
BuildGraphProgram
()
{
auto
prog
=
test
::
BuildProgramDesc
(
{
"x"
,
"x_mean_out"
,
"x_sub_mean_out"
,
"x_sub_mean_sqr_out"
,
"std_dev_out"
,
"std_dev_eps_out"
,
"std_dev_eps_sqrt_out"
,
"division_out"
,
"scale_out"
,
"shift_out"
},
{
"sqr_pow"
,
"eps"
,
"gamma"
,
"beta"
});
const
auto
&
block_desc
=
prog
.
Block
(
0
);
auto
*
x_var_desc
=
block_desc
.
FindVar
(
"x"
);
x_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
x_var_desc
->
SetShape
({
3
,
32
,
48
});
auto
*
eps_var_desc
=
block_desc
.
FindVar
(
"eps"
);
eps_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
eps_var_desc
->
SetShape
({
1
});
auto
*
gamma_var_desc
=
block_desc
.
FindVar
(
"gamma"
);
gamma_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
gamma_var_desc
->
SetShape
({
48
});
auto
*
beta_var_desc
=
block_desc
.
FindVar
(
"beta"
);
beta_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
beta_var_desc
->
SetShape
({
48
});
auto
*
x_mean
=
test
::
CreateOp
(
&
prog
,
"reduce_mean"
,
{{
"X"
,
"x"
}},
{{
"Out"
,
"x_mean_out"
}},
false
);
x_mean
->
SetAttr
(
"dim"
,
std
::
vector
<
int
>
{
-
1
});
x_mean
->
SetAttr
(
"keep_dim"
,
true
);
x_mean
->
SetAttr
(
"reduce_all"
,
false
);
test
::
CreateOp
(
&
prog
,
"elementwise_sub"
,
{{
"X"
,
"x"
},
{
"Y"
,
"x_mean_out"
}},
{{
"Out"
,
"x_sub_mean_out"
}},
false
);
test
::
CreateOp
(
&
prog
,
"elementwise_pow"
,
{{
"X"
,
"x_sub_mean_out"
},
{
"Y"
,
"sqr_pow"
}},
{{
"Out"
,
"x_sub_mean_sqr_out"
}},
false
);
auto
*
std_dev
=
test
::
CreateOp
(
&
prog
,
"reduce_mean"
,
{{
"X"
,
"x_sub_mean_sqr_out"
}},
{{
"Out"
,
"std_dev_out"
}},
false
);
std_dev
->
SetAttr
(
"dim"
,
std
::
vector
<
int
>
{
-
1
});
std_dev
->
SetAttr
(
"keep_dim"
,
true
);
std_dev
->
SetAttr
(
"reduce_all"
,
false
);
test
::
CreateOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"std_dev_out"
},
{
"Y"
,
"eps"
}},
{{
"Out"
,
"std_dev_eps_out"
}},
false
);
test
::
CreateOp
(
&
prog
,
"sqrt"
,
{{
"X"
,
"std_dev_eps_out"
}},
{{
"Out"
,
"std_dev_eps_sqrt_out"
}},
false
);
test
::
CreateOp
(
&
prog
,
"elementwise_div"
,
{{
"X"
,
"x_sub_mean_out"
},
{
"Y"
,
"std_dev_eps_sqrt_out"
}},
{{
"Out"
,
"division_out"
}},
false
);
test
::
CreateOp
(
&
prog
,
"elementwise_mul"
,
{{
"X"
,
"division_out"
},
{
"Y"
,
"gamma"
}},
{{
"Out"
,
"scale_out"
}},
false
);
test
::
CreateOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"scale_out"
},
{
"Y"
,
"beta"
}},
{{
"Out"
,
"shift_out"
}},
false
);
return
prog
;
}
bool
CheckFusedSubgraphOpsCount
(
const
Graph
&
graph
)
{
return
test
::
AssertOpsCount
(
graph
,
{{
"reduce_mean"
,
0
},
{
"elementwise_sub"
,
0
},
{
"elementwise_pow"
,
0
},
{
"elementwise_add"
,
0
},
{
"sqrt"
,
0
},
{
"elementwise_div"
,
0
},
{
"elementwise_mul"
,
0
},
{
"layer_norm"
,
1
}});
}
class
LayerNormFuseTest
{
public:
LayerNormFuseTest
()
:
m_prog
{
test
::
BuildProgramDesc
(
{
"x"
,
"x_mean_out"
,
"x_sub_mean_out"
,
"x_sub_mean_sqr_out"
,
"std_dev_out"
,
"std_dev_eps_out"
,
"std_dev_eps_sqrt_out"
,
"division_out"
,
"scale_out"
,
"shift_out"
},
{
"sqr_pow"
,
"eps"
,
"gamma"
,
"beta"
})},
m_place
{},
m_exe
{
m_place
},
m_block_desc
{
m_prog
.
Block
(
0
)}
{
auto
*
x_var_desc
=
m_block_desc
.
FindVar
(
"x"
);
x_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
x_var_desc
->
SetShape
({
3
,
32
,
48
});
auto
*
eps_var_desc
=
m_block_desc
.
FindVar
(
"eps"
);
eps_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
eps_var_desc
->
SetShape
({
1
});
auto
*
gamma_var_desc
=
m_block_desc
.
FindVar
(
"gamma"
);
gamma_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
gamma_var_desc
->
SetShape
({
48
});
auto
*
beta_var_desc
=
m_block_desc
.
FindVar
(
"beta"
);
beta_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
beta_var_desc
->
SetShape
({
48
});
auto
*
x_mean
=
test
::
CreateOp
(
&
m_prog
,
"reduce_mean"
,
{{
"X"
,
"x"
}},
{{
"Out"
,
"x_mean_out"
}},
false
);
x_mean
->
SetAttr
(
"dim"
,
std
::
vector
<
int
>
{
-
1
});
x_mean
->
SetAttr
(
"keep_dim"
,
true
);
x_mean
->
SetAttr
(
"reduce_all"
,
false
);
test
::
CreateOp
(
&
m_prog
,
"elementwise_sub"
,
{{
"X"
,
"x"
},
{
"Y"
,
"x_mean_out"
}},
{{
"Out"
,
"x_sub_mean_out"
}},
false
);
test
::
CreateOp
(
&
m_prog
,
"elementwise_pow"
,
{{
"X"
,
"x_sub_mean_out"
},
{
"Y"
,
"sqr_pow"
}},
{{
"Out"
,
"x_sub_mean_sqr_out"
}},
false
);
auto
*
std_dev
=
test
::
CreateOp
(
&
m_prog
,
"reduce_mean"
,
{{
"X"
,
"x_sub_mean_sqr_out"
}},
{{
"Out"
,
"std_dev_out"
}},
false
);
std_dev
->
SetAttr
(
"dim"
,
std
::
vector
<
int
>
{
-
1
});
std_dev
->
SetAttr
(
"keep_dim"
,
true
);
std_dev
->
SetAttr
(
"reduce_all"
,
false
);
test
::
CreateOp
(
&
m_prog
,
"elementwise_add"
,
{{
"X"
,
"std_dev_out"
},
{
"Y"
,
"eps"
}},
{{
"Out"
,
"std_dev_eps_out"
}},
false
);
test
::
CreateOp
(
&
m_prog
,
"sqrt"
,
{{
"X"
,
"std_dev_eps_out"
}},
{{
"Out"
,
"std_dev_eps_sqrt_out"
}},
false
);
test
::
CreateOp
(
&
m_prog
,
"elementwise_div"
,
{{
"X"
,
"x_sub_mean_out"
},
{
"Y"
,
"std_dev_eps_sqrt_out"
}},
{{
"Out"
,
"division_out"
}},
false
);
test
::
CreateOp
(
&
m_prog
,
"elementwise_mul"
,
{{
"X"
,
"division_out"
},
{
"Y"
,
"gamma"
}},
{{
"Out"
,
"scale_out"
}},
false
);
test
::
CreateOp
(
&
m_prog
,
"elementwise_add"
,
{{
"X"
,
"scale_out"
},
{
"Y"
,
"beta"
}},
{{
"Out"
,
"shift_out"
}},
false
);
}
template
<
typename
Func
>
LayerNormFuseTest
(
const
Func
&
func
,
int
removed_nodes
=
0
,
int
added_nodes
=
0
)
:
LayerNormFuseTest
()
{
m_removed_nodes
=
removed_nodes
;
m_added_nodes
=
added_nodes
;
func
(
m_block_desc
);
}
void
setupGraph
()
{
auto
initFun
=
[
this
](
const
Scope
&
scope
,
const
paddle
::
platform
::
CPUPlace
&
place
)
{
this
->
initEpsTensorValue
(
scope
,
place
);
};
setupGraphWithInitFunc
(
initFun
);
}
template
<
typename
Func
>
void
setupGraphWithInitFunc
(
const
Func
&
func
)
{
m_graph
.
reset
(
new
Graph
(
m_prog
));
// Init scope, as it is used in pass
m_exe
.
CreateVariables
(
m_prog
,
0
,
true
,
&
m_scope
);
func
(
m_scope
,
m_place
);
m_graph
->
SetNotOwned
(
kParamScopeAttr
,
&
m_scope
);
}
void
run
(
bool
fusion
=
false
)
const
{
EXPECT_TRUE
(
test
::
RunPassAndAssert
(
m_graph
.
get
(),
"layer_norm_fuse_pass"
,
"x"
,
"shift_out"
,
m_removed_nodes
,
m_added_nodes
));
EXPECT_TRUE
(
CheckSubgraphOpsCount
(
*
m_graph
,
fusion
));
}
const
ProgramDesc
&
getProgramDesc
()
const
{
return
m_prog
;
}
const
Graph
*
getGraph
()
const
{
return
m_graph
.
get
();
}
private:
void
initEpsTensorValue
(
const
Scope
&
scope
,
const
paddle
::
platform
::
CPUPlace
&
place
)
{
float
eps_value
=
1e-5
;
test
::
InitLoDTensorHolder
<
float
>
(
scope
,
place
,
"eps"
,
{
1
},
&
eps_value
);
}
bool
CheckSubgraphOpsCount
(
const
Graph
&
graph
,
bool
fusion
)
const
{
if
(
fusion
)
return
test
::
AssertOpsCount
(
graph
,
{{
"reduce_mean"
,
0
},
{
"elementwise_sub"
,
0
},
{
"elementwise_pow"
,
0
},
{
"elementwise_add"
,
0
},
{
"sqrt"
,
0
},
{
"elementwise_div"
,
0
},
{
"elementwise_mul"
,
0
},
{
"layer_norm"
,
1
}});
else
return
test
::
AssertOpsCount
(
graph
,
{{
"reduce_mean"
,
2
},
{
"elementwise_sub"
,
1
},
{
"elementwise_pow"
,
1
},
{
"elementwise_add"
,
2
},
{
"sqrt"
,
1
},
{
"elementwise_div"
,
1
},
{
"elementwise_mul"
,
1
},
{
"layer_norm"
,
0
}});
}
int
m_removed_nodes
{
19
};
int
m_added_nodes
{
3
};
ProgramDesc
m_prog
;
paddle
::
platform
::
CPUPlace
m_place
;
NaiveExecutor
m_exe
;
const
BlockDesc
&
m_block_desc
;
Scope
m_scope
;
std
::
unique_ptr
<
Graph
>
m_graph
{
nullptr
};
};
}
// namespace
// ------------------------------ Test cases -----------------------------------
TEST
(
FuseLayerNormPass
,
TestFuse
)
{
ProgramDesc
prog
=
BuildGraphProgram
();
Graph
graph
(
prog
);
constexpr
int
removed_nodes
=
19
;
// LayerNorm + outputs: {Mean, Variance}
constexpr
int
added_nodes
=
3
;
auto
place
=
paddle
::
platform
::
CPUPlace
();
NaiveExecutor
exe
{
place
};
Scope
scope
;
float
eps_value
=
1e-5
f
;
// Init scope, as it is used in pass
exe
.
CreateVariables
(
prog
,
0
,
true
,
&
scope
);
test
::
InitLoDTensorHolder
<
float
>
(
&
scope
,
place
,
"eps"
,
{
1
},
&
eps_value
);
graph
.
SetNotOwned
(
kParamScopeAttr
,
&
scope
);
EXPECT_TRUE
(
test
::
RunPassAndAssert
(
&
graph
,
"layer_norm_fuse_pass"
,
"x"
,
"shift_out"
,
removed_nodes
,
added_nodes
));
EXPECT_TRUE
(
CheckFusedSubgraphOpsCount
(
graph
));
for
(
const
auto
*
node
:
graph
.
Nodes
())
{
LayerNormFuseTest
lnorm_test
;
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
true
);
// additional attribute checks
for
(
const
auto
*
node
:
lnorm_test
.
getGraph
()
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
->
Type
()
==
"layer_norm"
)
{
const
auto
*
op
=
node
->
Op
();
ASSERT_TRUE
(
op
->
HasAttr
(
"is_test"
));
...
...
@@ -136,54 +192,194 @@ TEST(FuseLayerNormPass, TestFuse) {
}
TEST
(
FuseLayerNormPass
,
TestInvalidEpsNumel
)
{
ProgramDesc
prog
=
BuildGraphProgram
();
const
auto
editEpsFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
eps_var_desc
=
block_desc
.
FindVar
(
"eps"
);
eps_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
eps_var_desc
->
SetShape
({
2
});
};
const
auto
initEpsTensor
=
[](
const
Scope
&
scope
,
const
paddle
::
platform
::
CPUPlace
&
place
)
{
auto
eps_values
=
std
::
vector
<
float
>
{
1e-5
f
,
1e-5
f
};
test
::
InitLoDTensorHolder
<
float
>
(
scope
,
place
,
"eps"
,
{
2
},
eps_values
.
data
());
};
LayerNormFuseTest
lnorm_test
(
editEpsFun
);
lnorm_test
.
setupGraphWithInitFunc
(
initEpsTensor
);
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
TestInvalidEpsDataType
)
{
const
auto
editEpsFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
eps_var_desc
=
block_desc
.
FindVar
(
"eps"
);
eps_var_desc
->
SetDataType
(
proto
::
VarType
::
FP64
);
eps_var_desc
->
SetShape
({
1
});
};
const
auto
initEpsTensor
=
[](
const
Scope
&
scope
,
const
paddle
::
platform
::
CPUPlace
&
place
)
{
double
eps_value
=
1e-5
;
test
::
InitLoDTensorHolder
<
double
>
(
scope
,
place
,
"eps"
,
{
1
},
&
eps_value
);
};
LayerNormFuseTest
lnorm_test
(
editEpsFun
);
lnorm_test
.
setupGraphWithInitFunc
(
initEpsTensor
);
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
TestInvalidGammaRank
)
{
const
auto
editGammaFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
gamma_var_desc
=
block_desc
.
FindVar
(
"gamma"
);
gamma_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
gamma_var_desc
->
SetShape
({
48
,
32
});
};
auto
*
eps_var_desc
=
prog
.
Block
(
0
).
FindVar
(
"eps"
);
eps_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
eps_var_desc
->
SetShape
({
2
});
LayerNormFuseTest
lnorm_test
(
editGammaFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
TestInvalidBetaRank
)
{
const
auto
editBetaFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
beta_var_desc
=
block_desc
.
FindVar
(
"beta"
);
beta_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
beta_var_desc
->
SetShape
({
48
,
32
});
};
Graph
graph
(
prog
);
constexpr
int
removed_nodes
=
19
;
constexpr
int
added_nodes
=
3
;
LayerNormFuseTest
lnorm_test
(
editBetaFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
auto
place
=
paddle
::
platform
::
CPUPlace
();
NaiveExecutor
exe
{
place
};
Scope
scope
;
auto
eps_values
=
std
::
vector
<
float
>
{
1e-5
f
,
1e-5
f
};
// Init scope, as it is used in pass
exe
.
CreateVariables
(
prog
,
0
,
true
,
&
scope
);
test
::
InitLoDTensorHolder
<
float
>
(
&
scope
,
place
,
"eps"
,
{
2
},
eps_values
.
data
());
TEST
(
FuseLayerNormPass
,
TestUnequalGammaBetaShapes
)
{
const
auto
editGammaBetaFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
beta_var_desc
=
block_desc
.
FindVar
(
"beta"
);
beta_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
beta_var_desc
->
SetShape
({
32
});
};
graph
.
SetNotOwned
(
kParamScopeAttr
,
&
scope
);
EXPECT_THROW
(
test
::
RunPassAndAssert
(
&
graph
,
"layer_norm_fuse_pass"
,
"x"
,
"shift_out"
,
removed_nodes
,
added_nodes
),
paddle
::
platform
::
EnforceNotMet
);
LayerNormFuseTest
lnorm_test
(
editGammaBetaFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
TestInvalidEpsDataType
)
{
ProgramDesc
prog
=
BuildGraphProgram
();
auto
*
eps_var_desc
=
prog
.
Block
(
0
).
FindVar
(
"eps"
);
eps_var_desc
->
SetDataType
(
proto
::
VarType
::
FP64
);
eps_var_desc
->
SetShape
({
1
});
Graph
graph
(
prog
);
constexpr
int
removed_nodes
=
19
;
constexpr
int
added_nodes
=
3
;
auto
place
=
paddle
::
platform
::
CPUPlace
();
NaiveExecutor
exe
{
place
};
Scope
scope
;
double
eps_value
=
1e-5
;
// Init scope, as it is used in pass
exe
.
CreateVariables
(
prog
,
0
,
true
,
&
scope
);
test
::
InitLoDTensorHolder
<
double
>
(
&
scope
,
place
,
"eps"
,
{
1
},
&
eps_value
);
graph
.
SetNotOwned
(
kParamScopeAttr
,
&
scope
);
EXPECT_THROW
(
test
::
RunPassAndAssert
(
&
graph
,
"layer_norm_fuse_pass"
,
"x"
,
"shift_out"
,
removed_nodes
,
added_nodes
),
paddle
::
platform
::
EnforceNotMet
);
TEST
(
FuseLayerNormPass
,
TestGammaBetaUnequalInputChannelShape
)
{
const
auto
editGammaBetaFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
beta_var_desc
=
block_desc
.
FindVar
(
"beta"
);
beta_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
beta_var_desc
->
SetShape
({
32
});
auto
*
gamma_var_desc
=
block_desc
.
FindVar
(
"gamma"
);
gamma_var_desc
->
SetDataType
(
proto
::
VarType
::
FP32
);
gamma_var_desc
->
SetShape
({
32
});
};
LayerNormFuseTest
lnorm_test
(
editGammaBetaFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
NoFusionBadInMeanDimAttrRank
)
{
const
auto
editFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
x_mean_desc
=
test
::
GetOp
(
block_desc
,
"reduce_mean"
,
"Out"
,
"x_mean_out"
);
ASSERT_NE
(
x_mean_desc
,
nullptr
);
x_mean_desc
->
SetAttr
(
"dim"
,
std
::
vector
<
int
>
{
1
,
1
});
};
LayerNormFuseTest
lnorm_test
(
editFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
NoFusionBadInMeanDimAttr
)
{
const
auto
editFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
x_mean_desc
=
test
::
GetOp
(
block_desc
,
"reduce_mean"
,
"Out"
,
"x_mean_out"
);
ASSERT_NE
(
x_mean_desc
,
nullptr
);
x_mean_desc
->
SetAttr
(
"dim"
,
std
::
vector
<
int
>
{
1
});
};
LayerNormFuseTest
lnorm_test
(
editFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
NoFusionBadInMeanKeepDimAttr
)
{
const
auto
editFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
x_mean_desc
=
test
::
GetOp
(
block_desc
,
"reduce_mean"
,
"Out"
,
"x_mean_out"
);
ASSERT_NE
(
x_mean_desc
,
nullptr
);
x_mean_desc
->
SetAttr
(
"keep_dim"
,
false
);
};
LayerNormFuseTest
lnorm_test
(
editFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
NoFusionBadInMeanReduceAllAttr
)
{
const
auto
editFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
x_mean_desc
=
test
::
GetOp
(
block_desc
,
"reduce_mean"
,
"Out"
,
"x_mean_out"
);
ASSERT_NE
(
x_mean_desc
,
nullptr
);
x_mean_desc
->
SetAttr
(
"reduce_all"
,
true
);
};
LayerNormFuseTest
lnorm_test
(
editFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
NoFusionBadStdDevMeanDimAttrRank
)
{
const
auto
editFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
std_dev_desc
=
test
::
GetOp
(
block_desc
,
"reduce_mean"
,
"Out"
,
"std_dev_out"
);
ASSERT_NE
(
std_dev_desc
,
nullptr
);
std_dev_desc
->
SetAttr
(
"dim"
,
std
::
vector
<
int
>
{
1
,
1
});
};
LayerNormFuseTest
lnorm_test
(
editFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
NoFusionBadStdDevMeanDimAttr
)
{
const
auto
editFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
std_dev_desc
=
test
::
GetOp
(
block_desc
,
"reduce_mean"
,
"Out"
,
"std_dev_out"
);
ASSERT_NE
(
std_dev_desc
,
nullptr
);
std_dev_desc
->
SetAttr
(
"dim"
,
std
::
vector
<
int
>
{
1
});
};
LayerNormFuseTest
lnorm_test
(
editFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
NoFusionBadStdDevMeanKeepDimAttr
)
{
const
auto
editFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
std_dev_desc
=
test
::
GetOp
(
block_desc
,
"reduce_mean"
,
"Out"
,
"std_dev_out"
);
ASSERT_NE
(
std_dev_desc
,
nullptr
);
std_dev_desc
->
SetAttr
(
"keep_dim"
,
false
);
};
LayerNormFuseTest
lnorm_test
(
editFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
NoFusionBadStdDevMeanReduceAllAttr
)
{
const
auto
editFun
=
[](
const
BlockDesc
&
block_desc
)
{
auto
*
std_dev_desc
=
test
::
GetOp
(
block_desc
,
"reduce_mean"
,
"Out"
,
"std_dev_out"
);
ASSERT_NE
(
std_dev_desc
,
nullptr
);
std_dev_desc
->
SetAttr
(
"reduce_all"
,
true
);
};
LayerNormFuseTest
lnorm_test
(
editFun
);
lnorm_test
.
setupGraph
();
lnorm_test
.
run
(
false
);
}
TEST
(
FuseLayerNormPass
,
pass_op_version_check
)
{
...
...
paddle/fluid/framework/ir/pass_test_util.cc
浏览文件 @
092a2b14
...
...
@@ -175,10 +175,11 @@ bool RunPassAndAssert(Graph* graph, const std::string& pass_name,
}
template
<
typename
T
>
void
InitLoDTensorHolder
(
Scope
*
scope
,
const
paddle
::
platform
::
Place
&
place
,
void
InitLoDTensorHolder
(
const
Scope
&
scope
,
const
paddle
::
platform
::
Place
&
place
,
const
std
::
string
&
var_name
,
const
std
::
vector
<
int64_t
>&
dims
,
const
T
*
data
)
{
auto
var
=
scope
->
Var
(
var_name
);
auto
var
=
scope
.
FindLocal
Var
(
var_name
);
auto
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
auto
*
tensor_mem_ptr
=
tensor
->
mutable_data
<
T
>
(
make_ddim
(
dims
),
place
);
if
(
data
!=
nullptr
)
{
...
...
@@ -189,14 +190,16 @@ void InitLoDTensorHolder(Scope* scope, const paddle::platform::Place& place,
}
// Instantiate for below data types.
template
void
InitLoDTensorHolder
<
float
>(
Scope
*
,
const
paddle
::
platform
::
Place
&
,
template
void
InitLoDTensorHolder
<
float
>(
const
Scope
&
,
const
paddle
::
platform
::
Place
&
,
const
std
::
string
&
,
const
std
::
vector
<
int64_t
>&
,
const
float
*
);
template
void
InitLoDTensorHolder
<
int
>(
Scope
*
,
const
paddle
::
platform
::
Place
&
,
template
void
InitLoDTensorHolder
<
int
>(
const
Scope
&
,
const
paddle
::
platform
::
Place
&
,
const
std
::
string
&
,
const
std
::
vector
<
int64_t
>&
,
const
int
*
);
template
void
InitLoDTensorHolder
<
double
>(
Scope
*
,
template
void
InitLoDTensorHolder
<
double
>(
const
Scope
&
,
const
paddle
::
platform
::
Place
&
,
const
std
::
string
&
,
const
std
::
vector
<
int64_t
>&
,
...
...
@@ -205,7 +208,13 @@ template void InitLoDTensorHolder<double>(Scope*,
OpDesc
*
GetOp
(
const
ProgramDesc
&
prog
,
const
std
::
string
&
op_type
,
const
std
::
string
&
output_name
,
const
std
::
string
&
output_arg_name
)
{
auto
all_ops
=
prog
.
Block
(
0
).
AllOps
();
return
GetOp
(
prog
.
Block
(
0
),
op_type
,
output_name
,
output_arg_name
);
}
OpDesc
*
GetOp
(
const
BlockDesc
&
block_desc
,
const
std
::
string
&
op_type
,
const
std
::
string
&
output_name
,
const
std
::
string
&
output_arg_name
)
{
auto
all_ops
=
block_desc
.
AllOps
();
for
(
auto
*
op_desc
:
all_ops
)
{
if
(
op_desc
->
Type
()
==
op_type
&&
op_desc
->
HasOutput
(
output_name
))
{
const
auto
&
arg_names
=
op_desc
->
Outputs
().
at
(
output_name
);
...
...
paddle/fluid/framework/ir/pass_test_util.h
浏览文件 @
092a2b14
...
...
@@ -128,7 +128,8 @@ bool RunPassAndAssert(Graph* graph, const std::string& pass_name,
/// @tparam T Tensor data type.
///
template
<
typename
T
>
void
InitLoDTensorHolder
(
Scope
*
scope
,
const
paddle
::
platform
::
Place
&
place
,
void
InitLoDTensorHolder
(
const
Scope
&
scope
,
const
paddle
::
platform
::
Place
&
place
,
const
std
::
string
&
var_name
,
const
std
::
vector
<
int64_t
>&
dims
,
const
T
*
data
=
nullptr
);
...
...
@@ -148,6 +149,10 @@ OpDesc* GetOp(const ProgramDesc& prog, const std::string& op_type,
const
std
::
string
&
output_name
,
const
std
::
string
&
output_arg_name
);
OpDesc
*
GetOp
(
const
BlockDesc
&
block_desc
,
const
std
::
string
&
op_type
,
const
std
::
string
&
output_name
,
const
std
::
string
&
output_arg_name
);
}
// namespace test
}
// namespace ir
}
// namespace framework
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录