Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
08a817e3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
08a817e3
编写于
12月 28, 2016
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete unnecessary parameters and modifications for some mathmatical
layers.
上级
ce939b30
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
45 addition
and
82 deletion
+45
-82
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+45
-82
未找到文件。
python/paddle/trainer/config_parser.py
浏览文件 @
08a817e3
...
@@ -1803,9 +1803,8 @@ class ConvTransLayer(ConvTransLayerBase):
...
@@ -1803,9 +1803,8 @@ class ConvTransLayer(ConvTransLayerBase):
@
config_layer
(
'norm'
)
@
config_layer
(
'norm'
)
class
NormLayer
(
LayerBase
):
class
NormLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
NormLayer
,
self
).
__init__
(
super
(
NormLayer
,
self
).
__init__
(
name
,
'norm'
,
0
,
inputs
=
inputs
,
**
xargs
)
name
,
'norm'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
input_layer
=
self
.
get_input_layer
(
input_index
)
norm_conf
=
self
.
config
.
inputs
[
input_index
].
norm_conf
norm_conf
=
self
.
config
.
inputs
[
input_index
].
norm_conf
...
@@ -1817,9 +1816,8 @@ class NormLayer(LayerBase):
...
@@ -1817,9 +1816,8 @@ class NormLayer(LayerBase):
@
config_layer
(
'pool'
)
@
config_layer
(
'pool'
)
class
PoolLayer
(
LayerBase
):
class
PoolLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
PoolLayer
,
self
).
__init__
(
super
(
PoolLayer
,
self
).
__init__
(
name
,
'pool'
,
0
,
inputs
=
inputs
,
**
xargs
)
name
,
'pool'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
input_layer
=
self
.
get_input_layer
(
input_index
)
pool_conf
=
self
.
config
.
inputs
[
input_index
].
pool_conf
pool_conf
=
self
.
config
.
inputs
[
input_index
].
pool_conf
...
@@ -1851,7 +1849,6 @@ class BatchNormLayer(LayerBase):
...
@@ -1851,7 +1849,6 @@ class BatchNormLayer(LayerBase):
inputs
,
inputs
,
active_type
=
"linear"
,
active_type
=
"linear"
,
bias
=
True
,
bias
=
True
,
device
=
None
,
use_global_stats
=
True
,
use_global_stats
=
True
,
moving_average_fraction
=
0.9
,
moving_average_fraction
=
0.9
,
batch_norm_type
=
None
,
batch_norm_type
=
None
,
...
@@ -1893,7 +1890,6 @@ class BatchNormLayer(LayerBase):
...
@@ -1893,7 +1890,6 @@ class BatchNormLayer(LayerBase):
0
,
0
,
active_type
=
active_type
,
active_type
=
active_type
,
inputs
=
inputs
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
**
xargs
)
if
use_global_stats
is
not
None
:
if
use_global_stats
is
not
None
:
...
@@ -1927,9 +1923,9 @@ class BatchNormLayer(LayerBase):
...
@@ -1927,9 +1923,9 @@ class BatchNormLayer(LayerBase):
@
config_layer
(
'trans'
)
@
config_layer
(
'trans'
)
class
TransLayer
(
LayerBase
):
class
TransLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
TransLayer
,
self
).
__init__
(
super
(
TransLayer
,
self
).
__init__
(
name
,
'trans'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'trans'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
config_assert
(
len
(
self
.
inputs
)
==
1
,
len
(
self
.
inputs
)
==
1
,
'TransLayer must have one and only one input'
)
'TransLayer must have one and only one input'
)
...
@@ -1938,9 +1934,9 @@ class TransLayer(LayerBase):
...
@@ -1938,9 +1934,9 @@ class TransLayer(LayerBase):
@
config_layer
(
'resize'
)
@
config_layer
(
'resize'
)
class
ResizeLayer
(
LayerBase
):
class
ResizeLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
**
xargs
):
super
(
ResizeLayer
,
self
).
__init__
(
super
(
ResizeLayer
,
self
).
__init__
(
name
,
'resize'
,
size
=
size
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'resize'
,
size
=
size
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
config_assert
(
len
(
self
.
inputs
)
==
1
,
len
(
self
.
inputs
)
==
1
,
'ResizeLayer must have one and only one input'
)
'ResizeLayer must have one and only one input'
)
...
@@ -2265,15 +2261,9 @@ def Generator(
...
@@ -2265,15 +2261,9 @@ def Generator(
@
config_layer
(
'expand'
)
@
config_layer
(
'expand'
)
class
ExpandLayer
(
LayerBase
):
class
ExpandLayer
(
LayerBase
):
def
__init__
(
self
,
def
__init__
(
self
,
name
,
inputs
,
trans_type
=
'non-seq'
,
bias
=
False
,
**
xargs
):
name
,
inputs
,
trans_type
=
'non-seq'
,
device
=
None
,
bias
=
False
,
**
xargs
):
super
(
ExpandLayer
,
self
).
__init__
(
super
(
ExpandLayer
,
self
).
__init__
(
name
,
'expand'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'expand'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
config_assert
(
len
(
self
.
inputs
)
==
2
,
'ExpandLayer takes 2 and only 2 inputs'
)
len
(
self
.
inputs
)
==
2
,
'ExpandLayer takes 2 and only 2 inputs'
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
trans_type
=
trans_type
...
@@ -2304,12 +2294,10 @@ class MaxLayer(LayerBase):
...
@@ -2304,12 +2294,10 @@ class MaxLayer(LayerBase):
inputs
,
inputs
,
trans_type
=
'non-seq'
,
trans_type
=
'non-seq'
,
active_type
=
'linear'
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
bias
=
False
,
output_max_index
=
None
,
output_max_index
=
None
,
**
xargs
):
**
xargs
):
super
(
MaxLayer
,
self
).
__init__
(
super
(
MaxLayer
,
self
).
__init__
(
name
,
'max'
,
0
,
inputs
=
inputs
,
**
xargs
)
name
,
'max'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'MaxLayer must have 1 input'
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'MaxLayer must have 1 input'
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
trans_type
=
trans_type
self
.
config
.
active_type
=
active_type
self
.
config
.
active_type
=
active_type
...
@@ -2356,7 +2344,6 @@ class SequenceLastInstanceLayer(LayerBase):
...
@@ -2356,7 +2344,6 @@ class SequenceLastInstanceLayer(LayerBase):
inputs
,
inputs
,
active_type
=
'linear'
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
trans_type
=
'non-seq'
,
device
=
None
,
bias
=
False
,
bias
=
False
,
**
xargs
):
**
xargs
):
super
(
SequenceLastInstanceLayer
,
self
).
__init__
(
super
(
SequenceLastInstanceLayer
,
self
).
__init__
(
...
@@ -2364,7 +2351,6 @@ class SequenceLastInstanceLayer(LayerBase):
...
@@ -2364,7 +2351,6 @@ class SequenceLastInstanceLayer(LayerBase):
'seqlastins'
,
'seqlastins'
,
0
,
0
,
inputs
=
inputs
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
active_type
=
active_type
,
**
xargs
)
**
xargs
)
config_assert
(
config_assert
(
...
@@ -2378,39 +2364,32 @@ class SequenceLastInstanceLayer(LayerBase):
...
@@ -2378,39 +2364,32 @@ class SequenceLastInstanceLayer(LayerBase):
@
config_layer
(
'seqfirstins'
)
@
config_layer
(
'seqfirstins'
)
class
SequenceFirstInstanceLayer
(
SequenceLastInstanceLayer
):
class
SequenceFirstInstanceLayer
(
SequenceLastInstanceLayer
):
def
__init__
(
def
__init__
(
self
,
self
,
name
,
name
,
inputs
,
inputs
,
active_type
=
'linear'
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
trans_type
=
'non-seq'
,
bias
=
False
,
device
=
None
,
**
xargs
):
bias
=
False
,
):
super
(
SequenceFirstInstanceLayer
,
self
).
__init__
(
super
(
SequenceFirstInstanceLayer
,
self
).
__init__
(
name
,
name
,
inputs
=
inputs
,
inputs
=
inputs
,
active_type
=
active_type
,
active_type
=
active_type
,
device
=
device
,
device
=
device
,
bias
=
bias
)
bias
=
bias
,
**
xargs
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
trans_type
=
trans_type
self
.
config
.
select_first
=
True
self
.
config
.
select_first
=
True
@
config_layer
(
'seqconcat'
)
@
config_layer
(
'seqconcat'
)
class
SequenceConcatLayer
(
LayerBase
):
class
SequenceConcatLayer
(
LayerBase
):
def
__init__
(
self
,
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
name
,
inputs
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
super
(
SequenceConcatLayer
,
self
).
__init__
(
super
(
SequenceConcatLayer
,
self
).
__init__
(
name
,
name
,
'seqconcat'
,
'seqconcat'
,
0
,
0
,
inputs
=
inputs
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
active_type
=
active_type
,
**
xargs
)
**
xargs
)
config_assert
(
config_assert
(
...
@@ -2428,7 +2407,6 @@ class SequenceReshapeLayer(LayerBase):
...
@@ -2428,7 +2407,6 @@ class SequenceReshapeLayer(LayerBase):
size
,
size
,
inputs
,
inputs
,
active_type
=
'linear'
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
bias
=
False
,
**
xargs
):
**
xargs
):
super
(
SequenceReshapeLayer
,
self
).
__init__
(
super
(
SequenceReshapeLayer
,
self
).
__init__
(
...
@@ -2436,7 +2414,6 @@ class SequenceReshapeLayer(LayerBase):
...
@@ -2436,7 +2414,6 @@ class SequenceReshapeLayer(LayerBase):
'seqreshape'
,
'seqreshape'
,
size
,
size
,
inputs
=
inputs
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
active_type
=
active_type
,
**
xargs
)
**
xargs
)
config_assert
(
config_assert
(
...
@@ -2447,21 +2424,9 @@ class SequenceReshapeLayer(LayerBase):
...
@@ -2447,21 +2424,9 @@ class SequenceReshapeLayer(LayerBase):
@
config_layer
(
'subseq'
)
@
config_layer
(
'subseq'
)
class
SubSequenceLayer
(
LayerBase
):
class
SubSequenceLayer
(
LayerBase
):
def
__init__
(
self
,
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
name
,
inputs
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
**
xargs
):
super
(
SubSequenceLayer
,
self
).
__init__
(
super
(
SubSequenceLayer
,
self
).
__init__
(
name
,
name
,
'subseq'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
'subseq'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
config_assert
(
len
(
inputs
)
==
3
,
'SubSequenceLayer must have 3 inputs'
)
config_assert
(
len
(
inputs
)
==
3
,
'SubSequenceLayer must have 3 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
input_layer0
=
self
.
get_input_layer
(
0
)
size
=
input_layer0
.
size
size
=
input_layer0
.
size
...
@@ -2471,9 +2436,9 @@ class SubSequenceLayer(LayerBase):
...
@@ -2471,9 +2436,9 @@ class SubSequenceLayer(LayerBase):
@
config_layer
(
'out_prod'
)
@
config_layer
(
'out_prod'
)
class
OuterProdLayer
(
LayerBase
):
class
OuterProdLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
OuterProdLayer
,
self
).
__init__
(
super
(
OuterProdLayer
,
self
).
__init__
(
name
,
'out_prod'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'out_prod'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'OuterProdLayer must have 2 inputs'
)
config_assert
(
len
(
inputs
)
==
2
,
'OuterProdLayer must have 2 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
input_layer0
=
self
.
get_input_layer
(
0
)
input_layer1
=
self
.
get_input_layer
(
1
)
input_layer1
=
self
.
get_input_layer
(
1
)
...
@@ -2482,9 +2447,9 @@ class OuterProdLayer(LayerBase):
...
@@ -2482,9 +2447,9 @@ class OuterProdLayer(LayerBase):
@
config_layer
(
'power'
)
@
config_layer
(
'power'
)
class
PowerLayer
(
LayerBase
):
class
PowerLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
PowerLayer
,
self
).
__init__
(
super
(
PowerLayer
,
self
).
__init__
(
name
,
'power'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'power'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'PowerLayer must have 2 inputs'
)
config_assert
(
len
(
inputs
)
==
2
,
'PowerLayer must have 2 inputs'
)
input_layer1
=
self
.
get_input_layer
(
1
)
input_layer1
=
self
.
get_input_layer
(
1
)
self
.
set_layer_size
(
input_layer1
.
size
)
self
.
set_layer_size
(
input_layer1
.
size
)
...
@@ -2495,8 +2460,13 @@ class PowerLayer(LayerBase):
...
@@ -2495,8 +2460,13 @@ class PowerLayer(LayerBase):
@
config_layer
(
'slope_intercept'
)
@
config_layer
(
'slope_intercept'
)
class
SlopeInterceptLayer
(
LayerBase
):
class
SlopeInterceptLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
slope
=
1.0
,
intercept
=
0.0
,
def
__init__
(
self
,
device
=
None
,
**
xargs
):
name
,
inputs
,
slope
=
1.0
,
intercept
=
0.0
,
device
=
None
,
**
xargs
):
super
(
SlopeInterceptLayer
,
self
).
__init__
(
super
(
SlopeInterceptLayer
,
self
).
__init__
(
name
,
'slope_intercept'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'slope_intercept'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
self
.
config
.
slope
=
slope
self
.
config
.
slope
=
slope
...
@@ -2508,9 +2478,9 @@ class SlopeInterceptLayer(LayerBase):
...
@@ -2508,9 +2478,9 @@ class SlopeInterceptLayer(LayerBase):
@
config_layer
(
'scaling'
)
@
config_layer
(
'scaling'
)
class
ScalingLayer
(
LayerBase
):
class
ScalingLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
ScalingLayer
,
self
).
__init__
(
super
(
ScalingLayer
,
self
).
__init__
(
name
,
'scaling'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'scaling'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'ScalingLayer must have 2 inputs'
)
config_assert
(
len
(
inputs
)
==
2
,
'ScalingLayer must have 2 inputs'
)
input_layer1
=
self
.
get_input_layer
(
1
)
input_layer1
=
self
.
get_input_layer
(
1
)
self
.
set_layer_size
(
input_layer1
.
size
)
self
.
set_layer_size
(
input_layer1
.
size
)
...
@@ -2521,9 +2491,9 @@ class ScalingLayer(LayerBase):
...
@@ -2521,9 +2491,9 @@ class ScalingLayer(LayerBase):
@
config_layer
(
'conv_shift'
)
@
config_layer
(
'conv_shift'
)
class
ConvShiftLayer
(
LayerBase
):
class
ConvShiftLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
ConvShiftLayer
,
self
).
__init__
(
super
(
ConvShiftLayer
,
self
).
__init__
(
name
,
'conv_shift'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'conv_shift'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
inputs
)
==
2
,
'ConvShiftLayer must have 2 inputs'
)
config_assert
(
len
(
inputs
)
==
2
,
'ConvShiftLayer must have 2 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
input_layer0
=
self
.
get_input_layer
(
0
)
self
.
set_layer_size
(
input_layer0
.
size
)
self
.
set_layer_size
(
input_layer0
.
size
)
...
@@ -2531,9 +2501,9 @@ class ConvShiftLayer(LayerBase):
...
@@ -2531,9 +2501,9 @@ class ConvShiftLayer(LayerBase):
@
config_layer
(
'convex_comb'
)
@
config_layer
(
'convex_comb'
)
class
ConvexCombinationLayer
(
LayerBase
):
class
ConvexCombinationLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
):
super
(
ConvexCombinationLayer
,
self
).
__init__
(
super
(
ConvexCombinationLayer
,
self
).
__init__
(
name
,
'convex_comb'
,
size
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'convex_comb'
,
size
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
config_assert
(
len
(
self
.
inputs
)
==
2
,
'ConvexCombinationLayer must have 2 inputs'
)
len
(
self
.
inputs
)
==
2
,
'ConvexCombinationLayer must have 2 inputs'
)
config_assert
(
config_assert
(
...
@@ -2572,9 +2542,9 @@ class BilinearInterpLayer(LayerBase):
...
@@ -2572,9 +2542,9 @@ class BilinearInterpLayer(LayerBase):
@
config_layer
(
'sum_to_one_norm'
)
@
config_layer
(
'sum_to_one_norm'
)
class
SumToOneNormLayer
(
LayerBase
):
class
SumToOneNormLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
SumToOneNormLayer
,
self
).
__init__
(
super
(
SumToOneNormLayer
,
self
).
__init__
(
name
,
'sum_to_one_norm'
,
0
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'sum_to_one_norm'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
config_assert
(
len
(
self
.
inputs
)
==
1
,
'SumToOneNormLayer must have 1 input'
)
len
(
self
.
inputs
)
==
1
,
'SumToOneNormLayer must have 1 input'
)
input_layer0
=
self
.
get_input_layer
(
0
)
input_layer0
=
self
.
get_input_layer
(
0
)
...
@@ -2619,17 +2589,10 @@ class AverageLayer(LayerBase):
...
@@ -2619,17 +2589,10 @@ class AverageLayer(LayerBase):
average_strategy
=
'average'
,
average_strategy
=
'average'
,
trans_type
=
'non-seq'
,
trans_type
=
'non-seq'
,
active_type
=
'linear'
,
active_type
=
'linear'
,
device
=
None
,
bias
=
False
,
bias
=
False
,
**
xargs
):
**
xargs
):
super
(
AverageLayer
,
self
).
__init__
(
super
(
AverageLayer
,
self
).
__init__
(
name
,
name
,
'average'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
'average'
,
0
,
inputs
=
inputs
,
device
=
device
,
active_type
=
active_type
,
**
xargs
)
self
.
config
.
average_strategy
=
average_strategy
self
.
config
.
average_strategy
=
average_strategy
self
.
config
.
trans_type
=
trans_type
self
.
config
.
trans_type
=
trans_type
config_assert
(
len
(
inputs
)
==
1
,
'AverageLayer must have 1 input'
)
config_assert
(
len
(
inputs
)
==
1
,
'AverageLayer must have 1 input'
)
...
@@ -2653,9 +2616,9 @@ class CosSimLayer(LayerBase):
...
@@ -2653,9 +2616,9 @@ class CosSimLayer(LayerBase):
@
config_layer
(
'tensor'
)
@
config_layer
(
'tensor'
)
class
TensorLayer
(
LayerBase
):
class
TensorLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
,
bias
=
True
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
bias
=
True
,
**
xargs
):
super
(
TensorLayer
,
self
).
__init__
(
super
(
TensorLayer
,
self
).
__init__
(
name
,
'tensor'
,
size
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
name
,
'tensor'
,
size
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'TensorLayer must have 2 inputs'
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'TensorLayer must have 2 inputs'
)
config_assert
(
size
>
0
,
'size must be positive'
)
config_assert
(
size
>
0
,
'size must be positive'
)
config_assert
(
inputs
[
1
].
parameter_name
==
None
,
config_assert
(
inputs
[
1
].
parameter_name
==
None
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录