Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0839bba3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0839bba3
编写于
12月 27, 2022
作者:
R
Ruibiao Chen
提交者:
GitHub
12月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support priority scheduling for standalone executor (#49275)
* Support priority scheduling for standalone executor * Add CPU test
上级
0a837cb2
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
181 addition
and
72 deletion
+181
-72
paddle/fluid/distributed/auto_parallel/dist_attr.cc
paddle/fluid/distributed/auto_parallel/dist_attr.cc
+11
-2
paddle/fluid/distributed/auto_parallel/dist_attr.h
paddle/fluid/distributed/auto_parallel/dist_attr.h
+7
-0
paddle/fluid/framework/new_executor/interpreter/interpreter_util.cc
...id/framework/new_executor/interpreter/interpreter_util.cc
+12
-10
paddle/fluid/framework/new_executor/interpretercore.cc
paddle/fluid/framework/new_executor/interpretercore.cc
+58
-40
paddle/fluid/framework/new_executor/interpretercore.h
paddle/fluid/framework/new_executor/interpretercore.h
+7
-1
paddle/fluid/framework/new_executor/new_executor_defs.cc
paddle/fluid/framework/new_executor/new_executor_defs.cc
+2
-4
paddle/fluid/framework/new_executor/new_executor_defs.h
paddle/fluid/framework/new_executor/new_executor_defs.h
+15
-15
paddle/fluid/pybind/auto_parallel_py.cc
paddle/fluid/pybind/auto_parallel_py.cc
+3
-0
python/paddle/fluid/tests/unittests/standalone_executor/test_standalone_op_priority.py
...ttests/standalone_executor/test_standalone_op_priority.py
+66
-0
未找到文件。
paddle/fluid/distributed/auto_parallel/dist_attr.cc
浏览文件 @
0839bba3
...
...
@@ -318,8 +318,11 @@ bool operator==(const TensorDistAttr& lhs, const TensorDistAttr& rhs) {
return
true
;
}
std
::
vector
<
std
::
string
>
OperatorDistAttr
::
fields_
{
"process_mesh"
,
"impl_type"
,
"impl_idx"
,
"execution_stream"
};
std
::
vector
<
std
::
string
>
OperatorDistAttr
::
fields_
{
"process_mesh"
,
"impl_type"
,
"impl_idx"
,
"execution_stream"
,
"scheduling_priority"
};
OperatorDistAttr
::
OperatorDistAttr
(
const
OpDesc
&
op
)
:
op_
(
&
op
)
{
VLOG
(
4
)
<<
"[OperatorDistAttr constructor] op type: "
<<
op_
->
Type
();
...
...
@@ -379,6 +382,7 @@ void OperatorDistAttr::initialize() {
impl_type_
=
kDefault
;
impl_idx_
=
0
;
execution_stream_
=
kDefault
;
scheduling_priority_
=
0
;
}
void
OperatorDistAttr
::
copy_from
(
const
OperatorDistAttr
&
dist_attr
)
{
...
...
@@ -388,6 +392,7 @@ void OperatorDistAttr::copy_from(const OperatorDistAttr& dist_attr) {
set_impl_type
(
dist_attr
.
impl_type
());
set_impl_idx
(
dist_attr
.
impl_idx
());
set_execution_stream
(
dist_attr
.
execution_stream
());
set_scheduling_priority
(
dist_attr
.
scheduling_priority
());
set_annotated
(
dist_attr
.
annotated
());
}
...
...
@@ -667,6 +672,7 @@ std::string OperatorDistAttr::to_string() const {
str
+=
"impl_type: "
+
impl_type_
+
", "
;
str
+=
"impl_idx: "
+
std
::
to_string
(
impl_idx_
)
+
", "
;
str
+=
"execution_stream: "
+
execution_stream_
+
", "
;
str
+=
"scheduling_priority: "
+
std
::
to_string
(
scheduling_priority_
)
+
", "
;
str
+=
"annotated: ["
+
str_join
(
annotated_
)
+
"], "
;
str
+=
"
\n
process_mesh: "
+
process_mesh_
.
to_string
()
+
", "
;
str
+=
"
\n
input_dist_attrs: [
\n
"
;
...
...
@@ -751,6 +757,9 @@ bool operator==(const OperatorDistAttr& lhs, const OperatorDistAttr& rhs) {
if
(
lhs
.
execution_stream
()
!=
rhs
.
execution_stream
())
{
return
false
;
}
if
(
lhs
.
scheduling_priority
()
!=
rhs
.
scheduling_priority
())
{
return
false
;
}
for
(
auto
const
&
item
:
lhs
.
input_dist_attrs
())
{
if
(
rhs
.
input_dist_attrs
().
count
(
item
.
first
)
!=
1
)
{
return
false
;
...
...
paddle/fluid/distributed/auto_parallel/dist_attr.h
浏览文件 @
0839bba3
...
...
@@ -213,6 +213,12 @@ class OperatorDistAttr {
execution_stream_
=
execution_stream
;
}
int64_t
scheduling_priority
()
const
{
return
scheduling_priority_
;
}
void
set_scheduling_priority
(
int64_t
scheduling_priority
)
{
scheduling_priority_
=
scheduling_priority
;
}
const
std
::
map
<
std
::
string
,
bool
>&
annotated
()
const
{
return
annotated_
;
}
void
set_annotated
(
const
std
::
map
<
std
::
string
,
bool
>&
annotated
);
...
...
@@ -271,6 +277,7 @@ class OperatorDistAttr {
std
::
string
impl_type_
;
int64_t
impl_idx_
=
-
1
;
std
::
string
execution_stream_
;
int64_t
scheduling_priority_
;
// lower value, higher priority, default to 0
std
::
map
<
std
::
string
,
bool
>
annotated_
;
};
...
...
paddle/fluid/framework/new_executor/interpreter/interpreter_util.cc
浏览文件 @
0839bba3
...
...
@@ -33,11 +33,6 @@
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
PADDLE_DEFINE_EXPORTED_bool
(
new_executor_serial_run
,
false
,
"Enable serial execution for standalone executor, used for debug."
);
PADDLE_DEFINE_EXPORTED_bool
(
new_executor_log_memory_stats
,
false
,
...
...
@@ -118,11 +113,7 @@ void AsyncWorkQueue::AddTask(const OpFuncType& op_func_type,
std
::
function
<
void
()
>
fn
)
{
// queue_idx=0 : kCpuSync or kGpuSync
// queue_idx=1 : kGPUAsync
// when serial_run, always make queue_idx=1, so only one thread is used
size_t
queue_idx
=
(
op_func_type
==
OpFuncType
::
kGpuAsync
||
FLAGS_new_executor_serial_run
);
VLOG
(
8
)
<<
"Add task: "
<<
queue_idx
;
queue_group_
->
AddTask
(
queue_idx
,
std
::
move
(
fn
));
queue_group_
->
AddTask
(
op_func_type
==
OpFuncType
::
kGpuAsync
,
std
::
move
(
fn
));
}
bool
IsCommunicationOp
(
const
std
::
string
&
op_name
)
{
...
...
@@ -585,6 +576,17 @@ void BuildOpFuncList(const platform::Place& place,
op_func_node
.
execution_stream_
=
dist_attr
->
execution_stream
();
}
if
(
dist_attr
)
{
op_func_node
.
priority_
=
dist_attr
->
scheduling_priority
();
}
else
if
(
interpreter
::
IsCommunicationOp
(
op_type
))
{
// NOTE(Ruibiao): Dispatching computation before communication improves
// multi-stream overlap when the time cost of communication less than that
// of the calculation (e.g., ResNet50_bs128_pure_fp16 N4C32 training).
op_func_node
.
priority_
=
1
;
}
VLOG
(
6
)
<<
"scheduling priority of "
<<
op_type
<<
" : "
<<
op_func_node
.
priority_
;
SingleStreamGuard
single_stream_guard
(
ops
[
i
]);
VLOG
(
4
)
<<
"Start run "
<<
place
<<
" "
<<
op
->
DebugStringEx
(
local_scope
);
...
...
paddle/fluid/framework/new_executor/interpretercore.cc
浏览文件 @
0839bba3
...
...
@@ -33,6 +33,10 @@
#endif
#include "paddle/phi/backends/device_manager.h"
PADDLE_DEFINE_EXPORTED_bool
(
new_executor_serial_run
,
false
,
"Enable serial execution for standalone executor, used for debug."
);
PADDLE_DEFINE_EXPORTED_bool
(
new_executor_use_inplace
,
false
,
"Use inplace in new executor"
);
...
...
@@ -128,6 +132,15 @@ InterpreterCore::InterpreterCore(const platform::Place& place,
local_scope_
=
local_scope
;
}
var_scope_
.
SetLocalScope
(
local_scope_
);
instruction_prority_less
=
[
this
](
size_t
lhs
,
size_t
rhs
)
{
Priority
lhs_prority
=
vec_instruction_
[
lhs
].
GetPriority
();
Priority
rhs_prority
=
vec_instruction_
[
rhs
].
GetPriority
();
if
(
lhs_prority
==
rhs_prority
)
{
return
lhs
>
rhs
;
}
return
lhs_prority
>
rhs_prority
;
};
}
InterpreterCore
::~
InterpreterCore
()
{
...
...
@@ -516,25 +529,31 @@ void InterpreterCore::BuildOperatorDependences() {
Instruction
&
cur_instr
=
vec_instruction_
[
instr_id
];
const
std
::
set
<
size_t
>&
next_instr_ids
=
downstream_map
[
instr_id
];
if
(
cur_instr
.
KernelType
()
==
OpFuncType
::
kGpuAsync
)
{
if
(
FLAGS_new_executor_serial_run
)
{
for
(
size_t
next_instr_id
:
next_instr_ids
)
{
if
(
vec_instruction_
[
next_instr_id
].
KernelType
()
==
OpFuncType
::
kGpuAsync
)
{
cur_instr
.
AddNextInstrInSameThread
(
next_instr_id
);
}
else
{
cur_instr
.
AddNextInstrInDifferentThread
(
next_instr_id
);
}
cur_instr
.
AddNextInstrInSameThread
(
next_instr_id
);
}
}
else
{
bool
has_instr_in_same_thread
=
false
;
for
(
size_t
next_instr_id
:
next_instr_ids
)
{
if
(
!
has_instr_in_same_thread
&&
vec_instruction_
[
next_instr_id
].
KernelType
()
!=
OpFuncType
::
kGpuAsync
)
{
cur_instr
.
AddNextInstrInSameThread
(
next_instr_id
);
has_instr_in_same_thread
=
true
;
}
else
{
cur_instr
.
AddNextInstrInDifferentThread
(
next_instr_id
);
if
(
cur_instr
.
KernelType
()
==
OpFuncType
::
kGpuAsync
)
{
for
(
size_t
next_instr_id
:
next_instr_ids
)
{
if
(
vec_instruction_
[
next_instr_id
].
KernelType
()
==
OpFuncType
::
kGpuAsync
)
{
cur_instr
.
AddNextInstrInSameThread
(
next_instr_id
);
}
else
{
cur_instr
.
AddNextInstrInDifferentThread
(
next_instr_id
);
}
}
}
else
{
bool
has_instr_in_same_thread
=
false
;
for
(
size_t
next_instr_id
:
next_instr_ids
)
{
if
(
!
has_instr_in_same_thread
&&
vec_instruction_
[
next_instr_id
].
KernelType
()
!=
OpFuncType
::
kGpuAsync
)
{
cur_instr
.
AddNextInstrInSameThread
(
next_instr_id
);
has_instr_in_same_thread
=
true
;
}
else
{
cur_instr
.
AddNextInstrInDifferentThread
(
next_instr_id
);
}
}
}
}
...
...
@@ -567,12 +586,7 @@ void InterpreterCore::Convert(
for
(
size_t
op_idx
=
0
;
op_idx
<
op_nums
;
++
op_idx
)
{
auto
&
op_func_node
=
nodes
[
op_idx
];
auto
*
dev_ctx_
=
stream_analyzer_
.
ParseDeviceContext
(
op_func_node
);
Priority
priority
=
interpreter
::
IsCommunicationOp
(
op_func_node
.
operator_base_
->
Type
())
?
Priority
::
kLowest
:
Priority
::
kNormal
;
vec_instruction_
.
emplace_back
(
op_idx
,
std
::
move
(
op_func_node
),
*
dev_ctx_
,
priority
);
vec_instruction_
.
emplace_back
(
op_idx
,
std
::
move
(
op_func_node
),
*
dev_ctx_
);
}
BuildOperatorDependences
();
...
...
@@ -938,8 +952,12 @@ void InterpreterCore::ExecuteInstructionList(
if
(
dependecy_count_
[
i
]
==
0
)
{
// NOTE(zhiqiu): hot fix for jit input var
RecordMemcpyD2H
(
vec_instr
.
at
(
i
));
async_work_queue_
->
AddTask
(
vec_instr
.
at
(
i
).
KernelType
(),
[
this
,
i
]
{
RunInstructionAsync
(
i
);
});
if
(
FLAGS_new_executor_serial_run
)
{
RunInstructionAsync
(
i
);
}
else
{
async_work_queue_
->
AddTask
(
vec_instr
.
at
(
i
).
KernelType
(),
[
this
,
i
]
{
RunInstructionAsync
(
i
);
});
}
}
}
...
...
@@ -965,8 +983,8 @@ void InterpreterCore::ExecuteInstructionList(
}
}
void
InterpreterCore
::
RunNextInstructions
(
const
Instruction
&
instr
,
std
::
deque
<
size_t
>
*
reserved_next_ops
)
{
void
InterpreterCore
::
RunNextInstructions
(
const
Instruction
&
instr
,
SchedulingQueue
*
reserved_next_ops
)
{
platform
::
RecordEvent
record
(
"RunNextInstructions"
,
platform
::
TracerEventType
::
UserDefined
,
10
);
...
...
@@ -986,21 +1004,21 @@ void InterpreterCore::RunNextInstructions(
for
(
size_t
next_instr_id
:
instr
.
NextInstrsInSameThread
())
{
if
(
IsReady
(
next_instr_id
))
{
if
(
vec_instruction_
[
next_instr_id
].
GetPriority
()
==
Priority
::
kLowest
)
{
reserved_next_ops
->
push_back
(
next_instr_id
);
}
else
{
reserved_next_ops
->
push_front
(
next_instr_id
);
}
reserved_next_ops
->
push
(
next_instr_id
);
}
}
}
void
InterpreterCore
::
RunInstructionAsync
(
size_t
instr_id
)
{
std
::
deque
<
size_t
>
ready_ops
;
ready_ops
.
push_back
(
instr_id
);
// NOTE(Ruibiao): Due to the uncertain order in multi-threading asynchronous
// scheduling, the priority order involved cross-thread scheduling is not
// guaranteed. Only Ops scheduled by the same AddTask call have the guarantee
// of priority order.
SchedulingQueue
ready_ops
(
instruction_prority_less
);
ready_ops
.
push
(
instr_id
);
while
(
!
ready_ops
.
empty
())
{
instr_id
=
ready_ops
.
front
();
ready_ops
.
pop
_front
();
instr_id
=
ready_ops
.
top
();
ready_ops
.
pop
();
auto
&
instr_node
=
vec_instruction_
.
at
(
instr_id
);
RunInstruction
(
instr_node
);
...
...
@@ -1330,24 +1348,24 @@ void InterpreterCore::AnalyseExecuteOrderForTrace() {
};
std
::
vector
<
size_t
>
trace_order
;
std
::
deque
<
size_t
>
ready_ops
;
SchedulingQueue
ready_ops
(
instruction_prority_less
)
;
for
(
size_t
instr_id
=
0
;
instr_id
<
dependecy_count_
.
size
();
++
instr_id
)
{
if
(
dependecy_count_
[
instr_id
]
==
0
)
{
ready_ops
.
push
_back
(
instr_id
);
ready_ops
.
push
(
instr_id
);
}
}
while
(
!
ready_ops
.
empty
())
{
auto
now_id
=
ready_ops
.
front
();
ready_ops
.
pop
_front
();
size_t
now_id
=
ready_ops
.
top
();
ready_ops
.
pop
();
trace_order
.
push_back
(
now_id
);
auto
next_op_set
=
op_downstream_map
[
now_id
];
for
(
size_t
next_op_id
:
next_op_set
)
{
if
(
IsReady
(
next_op_id
))
{
ready_ops
.
push
_back
(
next_op_id
);
ready_ops
.
push
(
next_op_id
);
}
}
}
...
...
paddle/fluid/framework/new_executor/interpretercore.h
浏览文件 @
0839bba3
...
...
@@ -78,6 +78,10 @@ class InterpreterCore {
const
platform
::
Place
&
GetPlace
()
const
{
return
place_
;
}
private:
using
InstructionPriorityLess
=
std
::
function
<
bool
(
size_t
,
size_t
)
>
;
using
SchedulingQueue
=
std
::
priority_queue
<
size_t
,
std
::
vector
<
size_t
>
,
InstructionPriorityLess
>
;
// build graph
void
Convert
(
std
::
vector
<
paddle
::
framework
::
OpFuncNode
>*
op_func_nodes
);
void
BuildOperatorDependences
();
...
...
@@ -97,7 +101,7 @@ class InterpreterCore {
void
RunInstructionAsync
(
size_t
instr_id
);
void
RunInstruction
(
const
Instruction
&
instr_node
);
void
RunNextInstructions
(
const
Instruction
&
instr_id
,
std
::
deque
<
size_t
>
*
reserved_next_ops
);
SchedulingQueue
*
reserved_next_ops
);
void
RunOperator
(
const
Instruction
&
instr_node
);
// Trace
void
TraceInstructionList
(
const
std
::
vector
<
Instruction
>&
vec_instr
);
...
...
@@ -170,6 +174,8 @@ class InterpreterCore {
// used for Trace
int64_t
sync_op_num_
{
-
1
};
std
::
vector
<
size_t
>
trace_execute_order_
;
InstructionPriorityLess
instruction_prority_less
;
};
std
::
shared_ptr
<
InterpreterCore
>
CreateInterpreterCore
(
...
...
paddle/fluid/framework/new_executor/new_executor_defs.cc
浏览文件 @
0839bba3
...
...
@@ -670,13 +670,11 @@ void VariableScope::CheckExist(const std::string& name) const {
Instruction
::
Instruction
(
size_t
id
,
OpFuncNode
&&
op_func_node
,
const
platform
::
DeviceContext
&
dev_ctx
,
const
Priority
priority
)
const
platform
::
DeviceContext
&
dev_ctx
)
:
is_artificial_
(
op_func_node
.
operator_base_
->
Type
()
==
"depend"
),
id_
(
id
),
op_func_node_
(
op_func_node
),
dev_ctx_
(
dev_ctx
),
priority_
(
priority
)
{
dev_ctx_
(
dev_ctx
)
{
PADDLE_ENFORCE_GE
(
id
,
0
,
platform
::
errors
::
PreconditionNotMet
(
...
...
paddle/fluid/framework/new_executor/new_executor_defs.h
浏览文件 @
0839bba3
...
...
@@ -32,6 +32,8 @@ namespace framework {
using
OpKernelComputeFunc
=
std
::
function
<
void
(
const
ExecutionContext
&
)
>
;
using
Priority
=
int64_t
;
constexpr
const
char
*
kCoalesceTensor
=
"coalesce_tensor"
;
// stream types
...
...
@@ -42,8 +44,6 @@ constexpr const char* kH2DStream = "H2DStream";
constexpr
int
kEmptyVarIndex
=
0
;
enum
class
Priority
{
kLowest
,
kNormal
};
class
InterpretercoreInferShapeContext
:
public
InferShapeContext
{
public:
InterpretercoreInferShapeContext
(
const
OperatorBase
&
op
,
...
...
@@ -263,29 +263,30 @@ enum class OpFuncType {
class
RuntimeInferShapeContext
;
struct
OpFuncNode
{
// TODO(zhiqiu): Better make it unique_ptr
std
::
shared_ptr
<
OperatorBase
>
operator_base_
;
std
::
string
execution_stream_
{
kDefaultStream
};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
input_index
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
output_index
;
// fit for phi kernel
phi
::
Kernel
*
phi_kernel_
{
nullptr
};
// not owned
platform
::
DeviceContext
*
dev_ctx_
;
// not owned
std
::
map
<
int
,
int
>
inplace_back_map
;
OpKernelComputeFunc
kernel_func_
;
platform
::
DeviceContext
*
dev_ctx_
;
// not owned
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
input_index
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
output_index
;
// fit for phi kernel
phi
::
Kernel
*
phi_kernel_
{
nullptr
};
// not owned
// TODO(zhiqiu): Better make it unique_ptr
std
::
shared_ptr
<
OperatorBase
>
operator_base_
;
std
::
string
execution_stream_
{
kDefaultStream
};
OpFuncType
type_
;
OpKernelComputeFunc
kernel_func_
;
Priority
priority_
{
0
};
// lower value, higher priority
};
class
Instruction
{
public:
Instruction
(
size_t
id
,
OpFuncNode
&&
op_func_node
,
const
platform
::
DeviceContext
&
dev_ctx
,
const
Priority
priority
);
const
platform
::
DeviceContext
&
dev_ctx
);
bool
IsArtificial
()
const
{
return
is_artificial_
;
}
...
...
@@ -368,7 +369,7 @@ class Instruction {
void
ClearInplace
();
Priority
GetPriority
()
const
{
return
priority_
;
}
Priority
GetPriority
()
const
{
return
op_func_node_
.
priority_
;
}
private:
bool
is_artificial_
;
// Instruction is artificial means that it is only used
...
...
@@ -384,7 +385,6 @@ class Instruction {
OpFuncNode
op_func_node_
;
const
platform
::
DeviceContext
&
dev_ctx_
;
// not owned
const
Priority
priority_
;
std
::
shared_ptr
<
RuntimeContext
>
runtime_ctx_
;
std
::
shared_ptr
<
InterpretercoreInferShapeContext
>
infershape_ctx_
;
...
...
paddle/fluid/pybind/auto_parallel_py.cc
浏览文件 @
0839bba3
...
...
@@ -226,6 +226,9 @@ void BindAutoParallel(py::module *m) {
.
def_property
(
"execution_stream"
,
&
OperatorDistAttr
::
execution_stream
,
&
OperatorDistAttr
::
set_execution_stream
)
.
def_property
(
"scheduling_priority"
,
&
OperatorDistAttr
::
scheduling_priority
,
&
OperatorDistAttr
::
set_scheduling_priority
)
.
def_property
(
"annotated"
,
&
OperatorDistAttr
::
annotated
,
&
OperatorDistAttr
::
set_annotated
)
...
...
python/paddle/fluid/tests/unittests/standalone_executor/test_standalone_op_priority.py
0 → 100644
浏览文件 @
0839bba3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
from
paddle
import
static
paddle
.
enable_static
()
class
TestOpPriority
(
unittest
.
TestCase
):
def
test_op_priority
(
self
):
# In this test case, x and y share the same data,
# which is initialized to 0. The shared data is
# read and wrote by two concurrent Ops increment(x)
# and increment(y). In case of Op sequential scheduling,
# the result of increment(x) would be 1 while that of
# increment(y) would be 2. However, increment(y) is
# set to a higher priority than increment(x), so the
# result of increment(y) would be 1.
program
=
static
.
Program
()
with
static
.
program_guard
(
program
):
x
=
paddle
.
zeros
(
shape
=
[
1
],
dtype
=
'int32'
)
block
=
program
.
global_block
()
y
=
block
.
create_var
(
dtype
=
'int32'
)
block
.
append_op
(
type
=
'share_data'
,
inputs
=
{
'X'
:
x
.
name
},
outputs
=
{
'Out'
:
y
.
name
}
)
paddle
.
increment
(
x
)
block
.
ops
[
-
1
].
dist_attr
.
scheduling_priority
=
1
paddle
.
increment
(
y
)
block
.
ops
[
-
1
].
dist_attr
.
scheduling_priority
=
-
1
# Note that the priority order involved cross-thread scheduling
# is not guaranteed in standalone executor. As fetch(y)
# is scheduled in the different thread from increment(x),
# they are not scheduled in priority order. To make sure that
# fetch(y) is scheduled before increment(x) in priority order,
# we tricky enable serial_run here.
paddle
.
framework
.
set_flags
({
'FLAGS_new_executor_serial_run'
:
1
})
exe
=
static
.
Executor
()
# Currently, priority scheduling is not supported in the first
# step that builds Op list by running kernel. Remove the first
# run here when static-build without kernel running is supported.
result
=
exe
.
run
(
program
,
fetch_list
=
[
y
])
result
=
exe
.
run
(
program
,
fetch_list
=
[
y
])
self
.
assertEqual
(
result
[
0
],
1
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录