input (Variable): The input Tensor/LoDTensor to be added to the final result.
x (Variable): The first input Tensor/LoDTensor for matrix multiplication.
y (Variable): The second input Tensor/LoDTensor for matrix multiplication.
alpha (float): Coefficient of $x*y$.
beta (float): Coefficient of $input$.
alpha (float): Coefficient of $x*y$.
name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
raiseValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape,x_shape,y_shape))
ifinput_shape[0]!=x_shape[0]:
ifinput_shape[0]!=1:
raiseValueError("When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
ifinput_shape[1]!=y_shape[1]andinput_shape[1]!=1:
raiseValueError("When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
ifinput_shape[1]!=y_shape[1]:
ifinput_shape[1]!=1:
raiseValueError("When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
ifinput_shape[0]!=x_shape[0]andinput_shape[0]!=1:
raiseValueError("When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
ifx_shape[1]!=y_shape[0]:
raiseValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape,y_shape))