Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
07ea9ade
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
07ea9ade
编写于
10月 20, 2017
作者:
Y
Yan Chunwei
提交者:
GitHub
10月 20, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feature/dynamic recurrent op forward and backward (#4799)
上级
5380a547
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
478 addition
and
283 deletion
+478
-283
doc/design/block.md
doc/design/block.md
+1
-1
paddle/framework/backward.cc
paddle/framework/backward.cc
+14
-2
paddle/operators/dynamic_recurrent_op.cc
paddle/operators/dynamic_recurrent_op.cc
+194
-115
paddle/operators/dynamic_recurrent_op.h
paddle/operators/dynamic_recurrent_op.h
+108
-57
paddle/operators/dynamic_recurrent_op_test.cc
paddle/operators/dynamic_recurrent_op_test.cc
+22
-26
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+13
-13
paddle/operators/rnn/recurrent_op_utils.cc
paddle/operators/rnn/recurrent_op_utils.cc
+11
-11
paddle/operators/rnn/recurrent_op_utils.h
paddle/operators/rnn/recurrent_op_utils.h
+6
-6
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+5
-5
python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py
...on/paddle/v2/framework/tests/test_dynamic_recurrent_op.py
+94
-37
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+10
-10
未找到文件。
doc/design/block.md
浏览文件 @
07ea9ade
...
...
@@ -189,7 +189,7 @@ OpDesc {
inputs = {0} // the index of x in vars of BlockDesc above
outputs = {5, 3} // indices of act and hidden_out in vars of BlockDesc above
attrs {
"
memori
es" : {1} // the index of h
"
stat
es" : {1} // the index of h
"step_net" : <above step net>
}
};
...
...
paddle/framework/backward.cc
浏览文件 @
07ea9ade
...
...
@@ -21,6 +21,7 @@
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/dynamic_recurrent_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
...
...
@@ -220,8 +221,7 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
// process recurrent gradient op as a special operator.
if
(
forwardOp
.
Type
()
==
"recurrent"
)
{
// NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
// or
// this will result in infinite loop.
// or this will result in infinite loop.
const
auto
&
rnnop
=
*
static_cast
<
const
operators
::
RecurrentOp
*>
(
&
forwardOp
);
auto
rnn_grad_op
=
...
...
@@ -231,6 +231,18 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
// create stepnet's gradient op
rnn_grad_op
->
set_stepnet
(
BackwardRecursive
(
stepnet_op
,
no_grad_names
,
grad_to_var
,
uniq_id
));
}
else
if
(
forwardOp
.
Type
()
==
"dynamic_recurrent"
)
{
// NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
// or this will result in infinite loop.
const
auto
&
rnnop
=
*
static_cast
<
const
operators
::
DynamicRecurrentOp
*>
(
&
forwardOp
);
auto
rnn_grad_op
=
static_cast
<
operators
::
DynamicRecurrentGradientOp
*>
(
grad_op
.
get
());
const
auto
&
stepnet_op
=
*
static_cast
<
const
OperatorBase
*>
(
&
rnnop
.
rnn
.
GetStepUnit
());
// create stepnet's gradient op
rnn_grad_op
->
rnn
.
SetStepUnit
(
BackwardRecursive
(
stepnet_op
,
no_grad_names
,
grad_to_var
,
uniq_id
));
}
if
(
net
->
ops_
.
empty
())
{
// Current no aux op is added to network
...
...
paddle/operators/dynamic_recurrent_op.cc
浏览文件 @
07ea9ade
...
...
@@ -23,6 +23,7 @@ using framework::Scope;
using
framework
::
TensorArray
;
using
framework
::
LoDTensor
;
using
framework
::
Variable
;
using
framework
::
OperatorBase
;
using
framework
::
DySeqMetaBatch
;
namespace
detail
{
...
...
@@ -43,10 +44,9 @@ inline void CreateVariables(Scope& scope,
* be reordered, but the RNN op should not change the `boot_state` as an input
* variable's content.
*/
template
<
typename
T
>
inline
void
ReorderBootState
(
const
DySeqMetaBatch
&
metas
,
const
LoDTensor
&
boot_state
,
LoDTensor
*
tensor
,
const
platform
::
Place
&
dst_place
)
{
inline
void
ReorderInitialState
(
const
DySeqMetaBatch
&
metas
,
const
LoDTensor
&
boot_state
,
LoDTensor
*
tensor
,
const
platform
::
Place
&
dst_place
)
{
for
(
size_t
seq_id
=
0
;
seq_id
<
metas
.
size
();
seq_id
++
)
{
auto
slice
=
tensor
->
Slice
(
seq_id
,
seq_id
+
1
);
auto
boot_slice
=
...
...
@@ -56,58 +56,60 @@ inline void ReorderBootState(const DySeqMetaBatch& metas,
}
}
}
// namespace detail
class
DynamicRecurrentOpProtoAndCheckerMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
DynamicRecurrentOpProtoAndCheckerMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
const
auto
&
name
=
DynamicRecurrentOp
::
kArgName
;
// inputs and outputs stored in proto
AddInput
(
name
.
inlinks
,
"the inputs that need to be segmented for each step."
)
.
AsDuplicable
();
AddInput
(
name
.
boot_memories
,
"variables to initialize memories."
)
.
AsDuplicable
();
AddOutput
(
name
.
outlinks
,
"the outputs that need to concated for all steps."
)
.
AsDuplicable
();
AddOutput
(
name
.
step_scopes
,
"step scopes"
);
// Attributes stored in AttributeMap
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memories
,
"names of pre-memories"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
memories
,
"names of memories"
);
AddComment
(
"This is a RNN operator for varience-length sequences."
);
inline
void
RestoreInitialState
(
const
DySeqMetaBatch
&
metas
,
const
LoDTensor
&
tensor
,
LoDTensor
*
boot_state
,
const
platform
::
Place
&
dst_place
)
{
for
(
size_t
seq_id
=
0
;
seq_id
<
metas
.
size
();
seq_id
++
)
{
auto
slice
=
tensor
.
Slice
(
seq_id
,
seq_id
+
1
);
auto
boot_slice
=
boot_state
->
Slice
(
metas
[
seq_id
].
ori_idx
,
metas
[
seq_id
].
ori_idx
+
1
);
boot_slice
.
CopyFrom
(
slice
,
dst_place
,
platform
::
CPUDeviceContext
());
}
}
;
}
void
DynamicRecurrentOp
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
cache_
.
Init
(
kArgName
,
*
this
,
scope
,
&
arg_
);
}
// namespace detail
// Implementation for forward propagation.
template
<
>
void
RNNAlgorithm
::
Run
<
RNNAlgorithm
::
ComputeMode
::
kForward
>
(
const
framework
::
Scope
&
scope
,
const
framework
::
OperatorBase
&
op
,
const
platform
::
DeviceContext
&
dev_ctx
)
{
SetComputeMode
(
ComputeMode
::
kForward
);
cache_
.
Init
(
kArgNames
[
mode_
],
op
,
scope
,
&
dev_ctx
,
&
arg_
);
SplitInputs
();
CreateScopes
();
WriteStepInputs
();
InitStates
();
WriteStepOutputs
();
RunSteps
();
ConcatOutputs
();
}
// call stepnet in all the time steps
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
auto
&
step_scope
=
cache_
.
GetScope
(
step
);
stepnet_
->
Run
(
step_scope
,
dev_ctx
);
// Implementation for backward propagation.
template
<
>
void
RNNAlgorithm
::
Run
<
RNNAlgorithm
::
ComputeMode
::
kBackward
>
(
const
framework
::
Scope
&
scope
,
const
framework
::
OperatorBase
&
op
,
const
platform
::
DeviceContext
&
dev_ctx
)
{
SetComputeMode
(
ComputeMode
::
kBackward
);
cache_
.
Init
(
kArgNames
[
mode_
],
op
,
scope
,
&
dev_ctx
,
&
arg_
);
SplitInputs
();
WriteStepInputs
();
InitStates
();
WriteStepOutputs
();
RunSteps
();
// copy boot-states' gradients back.
for
(
const
auto
&
state
:
arg_
.
states
)
{
ExportInitialStateGradient
(
state
);
}
ConcatOutputs
();
}
void
DynamicRecurrentOp
::
SplitInputs
()
const
{
void
RNNAlgorithm
::
SplitInputs
()
{
// TODO(superjom) make level a config
// TODO(superjom) check all the inputs has the same LoD
int
level
=
0
;
for
(
const
auto
&
item
:
cache_
.
in
link
s
)
{
for
(
const
auto
&
item
:
cache_
.
in
put
s
)
{
const
auto
&
var
=
item
.
second
;
const
auto
&
tensor
=
var
->
Get
<
LoDTensor
>
();
TensorArray
&
ta
=
step_inputs_
[
item
.
first
];
...
...
@@ -124,8 +126,8 @@ void DynamicRecurrentOp::SplitInputs() const {
}
}
void
DynamicRecurrentOp
::
WriteStepInputs
()
const
{
for
(
const
auto
&
item
:
cache_
.
in
link
s
)
{
void
RNNAlgorithm
::
WriteStepInputs
()
{
for
(
const
auto
&
item
:
cache_
.
in
put
s
)
{
auto
ta_it
=
step_inputs_
.
find
(
item
.
first
);
PADDLE_ENFORCE
(
ta_it
!=
step_inputs_
.
end
(),
"step_inputs_ not compatible with memory set"
);
...
...
@@ -142,15 +144,15 @@ void DynamicRecurrentOp::WriteStepInputs() const {
}
}
void
DynamicRecurrentOp
::
WriteStepOutputs
()
const
{
void
RNNAlgorithm
::
WriteStepOutputs
()
{
// initialize step outputs
for
(
const
auto
&
item
:
cache_
.
out
link
s
)
{
for
(
const
auto
&
item
:
cache_
.
out
put
s
)
{
step_outputs_
.
emplace
(
item
.
first
,
TensorArray
());
}
PADDLE_ENFORCE_GT
(
step_outputs_
.
size
(),
0UL
);
}
void
DynamicRecurrentOp
::
CreateScopes
()
const
{
void
RNNAlgorithm
::
CreateScopes
()
{
PADDLE_ENFORCE_GT
(
cache_
.
num_steps
,
0
);
// resize scopes
size_t
num_scopes_need_create
=
cache_
.
num_steps
-
cache_
.
scopes
->
size
();
...
...
@@ -159,19 +161,19 @@ void DynamicRecurrentOp::CreateScopes() const {
}
// init temporary inputs
PADDLE_ENFORCE_NOT_NULL
(
step
ne
t_
,
"stepnet should be set first"
);
std
::
vector
<
std
::
string
>
memori
es
;
std
::
vector
<
std
::
string
>
pre_memori
es
;
std
::
vector
<
std
::
string
>
step
ne
t_outputs
;
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memori
es
.
end
(),
std
::
back_inserter
(
memori
es
),
[](
const
rnn
::
Memory
Attr
&
m
)
{
return
m
.
var
;
});
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memori
es
.
end
(),
std
::
back_inserter
(
pre_memori
es
),
[](
const
rnn
::
Memory
Attr
&
m
)
{
return
m
.
pre_var
;
});
for
(
const
auto
&
item
:
step
ne
t_
->
Outputs
())
{
PADDLE_ENFORCE_NOT_NULL
(
step
_uni
t_
,
"stepnet should be set first"
);
std
::
vector
<
std
::
string
>
stat
es
;
std
::
vector
<
std
::
string
>
ex_stat
es
;
std
::
vector
<
std
::
string
>
step
_uni
t_outputs
;
std
::
transform
(
arg_
.
states
.
begin
(),
arg_
.
stat
es
.
end
(),
std
::
back_inserter
(
stat
es
),
[](
const
rnn
::
State
Attr
&
m
)
{
return
m
.
var
;
});
std
::
transform
(
arg_
.
states
.
begin
(),
arg_
.
stat
es
.
end
(),
std
::
back_inserter
(
ex_stat
es
),
[](
const
rnn
::
State
Attr
&
m
)
{
return
m
.
pre_var
;
});
for
(
const
auto
&
item
:
step
_uni
t_
->
Outputs
())
{
for
(
const
auto
&
var
:
item
.
second
)
{
step
ne
t_outputs
.
push_back
(
var
);
step
_uni
t_outputs
.
push_back
(
var
);
}
}
...
...
@@ -179,13 +181,13 @@ void DynamicRecurrentOp::CreateScopes() const {
auto
&
scope
=
cache_
.
GetScope
(
step
);
detail
::
CreateVariables
(
scope
,
arg_
.
inlinks
);
detail
::
CreateVariables
(
scope
,
arg_
.
outlinks
);
detail
::
CreateVariables
(
scope
,
memori
es
);
detail
::
CreateVariables
(
scope
,
pre_memori
es
);
detail
::
CreateVariables
(
scope
,
step
ne
t_outputs
);
detail
::
CreateVariables
(
scope
,
stat
es
);
detail
::
CreateVariables
(
scope
,
ex_stat
es
);
detail
::
CreateVariables
(
scope
,
step
_uni
t_outputs
);
}
}
void
DynamicRecurrentOp
::
ConcatOutputs
()
const
{
void
RNNAlgorithm
::
ConcatOutputs
()
{
// TODO(superjom) transform this to a config
int
level
=
0
;
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
...
...
@@ -198,31 +200,45 @@ void DynamicRecurrentOp::ConcatOutputs() const {
item
.
second
.
WriteShared
(
step
,
*
tensor
);
}
}
// the in
link
s' lods should be the same, so randomly get one lod.
// the in
put
s' lods should be the same, so randomly get one lod.
const
auto
&
some_lod
=
cache_
.
scope
->
FindVar
(
arg_
.
inlinks
.
front
())
->
Get
<
LoDTensor
>
().
lod
();
const
auto
&
some_meta
=
dy_seq_metas_
[
arg_
.
inlinks
.
front
()];
for
(
auto
&
item
:
step_outputs_
)
{
auto
tensor
=
item
.
second
.
Pack
(
level
,
some_meta
,
some_lod
);
auto
*
output
=
cache_
.
out
link
s
[
item
.
first
]
->
GetMutable
<
LoDTensor
>
();
auto
*
output
=
cache_
.
out
put
s
[
item
.
first
]
->
GetMutable
<
LoDTensor
>
();
const_cast
<
LoDTensor
*>
(
output
)
->
ShareDataWith
(
tensor
);
}
}
void
DynamicRecurrentOp
::
InitStates
()
const
{
void
RNNAlgorithm
::
RunSteps
()
{
if
(
IsBackward
())
{
// call stepnet in all the time steps reversely
for
(
int
step
=
cache_
.
num_steps
-
1
;
step
>=
0
;
step
--
)
{
auto
&
step_scope
=
cache_
.
GetScope
(
step
);
step_unit_
->
Run
(
step_scope
,
*
cache_
.
dev_ctx
);
}
}
else
{
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
auto
&
step_scope
=
cache_
.
GetScope
(
step
);
step_unit_
->
Run
(
step_scope
,
*
cache_
.
dev_ctx
);
}
}
}
void
RNNAlgorithm
::
InitStates
()
{
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
for
(
const
auto
&
memory
:
arg_
.
memori
es
)
{
CreateState
(
memory
,
step
);
LinkState
(
memory
,
step
);
for
(
const
auto
&
state
:
arg_
.
stat
es
)
{
CreateState
(
state
,
step
);
LinkState
(
state
,
step
);
}
}
}
void
DynamicRecurrentOp
::
CreateState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
{
void
RNNAlgorithm
::
CreateState
(
const
rnn
::
StateAttr
&
state_attr
,
size_t
step
)
{
auto
&
scope
=
cache_
.
GetScope
(
step
);
auto
&
state
=
*
cache_
.
GetTensor
(
scope
,
memory
.
var
);
auto
&
boot_state
=
*
cache_
.
GetTensor
(
*
cache_
.
scope
,
memory
.
boot_var
);
auto
&
state
=
*
cache_
.
GetTensor
(
scope
,
state_attr
.
var
);
auto
&
boot_state
=
*
cache_
.
GetTensor
(
*
cache_
.
scope
,
state_attr
.
boot_var
);
size_t
num_instances
=
step_inputs_
[
arg_
.
inlinks
.
front
()].
Read
(
step
).
dims
()[
0
];
...
...
@@ -231,56 +247,79 @@ void DynamicRecurrentOp::CreateState(const rnn::MemoryAttr& memory,
state
.
Resize
(
dims
);
state
.
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
states_
[
memory
.
var
].
WriteShared
(
step
,
state
);
states_
[
state_attr
.
var
].
WriteShared
(
step
,
state
);
}
void
DynamicRecurrentOp
::
LinkState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
{
void
RNNAlgorithm
::
LinkState
(
const
rnn
::
StateAttr
&
state
,
size_t
step
)
{
auto
&
scope
=
cache_
.
GetScope
(
step
);
auto
&
state_pre
=
*
cache_
.
GetTensor
(
scope
,
memory
.
pre_var
);
auto
&
state_pre
=
*
cache_
.
GetTensor
(
scope
,
state
.
pre_var
);
// process the first state's boot-state(the 0-step in forward mode or the
// last step in backward mode)
// Only forward mode need to link the boot-state to the `pre-state` in first
// time step. In backward mode, need to copy the gradient of `pre-state` in
// first time step to the gradient of `boot-state`.
if
(
step
==
0
&&
IsForward
())
{
LinkInitialState
(
state
);
}
else
{
size_t
num_instances
=
step_inputs_
[
arg_
.
inlinks
.
front
()].
Read
(
step
).
dims
()[
0
];
auto
*
pre_state
=
cache_
.
GetTensor
(
cache_
.
GetScope
(
step
-
1
),
state
.
var
);
// shink and share from previous state
auto
shrinked_pre_state
=
pre_state
->
Slice
(
0
,
num_instances
);
state_pre
.
ShareDataWith
(
shrinked_pre_state
);
}
}
void
RNNAlgorithm
::
LinkInitialState
(
const
rnn
::
StateAttr
&
state
)
{
// all the step_inputs' metas should be the same, just randomly select one
// and get the dyseq meta.
const
auto
&
some_meta
=
dy_seq_metas_
[
arg_
.
inlinks
.
front
()];
size_t
num_instances
=
step_inputs_
[
arg_
.
inlinks
.
front
()].
Read
(
step
).
dims
()[
0
];
auto
&
scope
=
cache_
.
GetScope
(
0
);
auto
&
state_pre
=
*
cache_
.
GetTensor
(
scope
,
state
.
pre_var
);
auto
*
pre_state
=
cache_
.
GetTensor
(
*
cache_
.
scope
,
state
.
boot_var
);
pre_state
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
// allocate state
state_pre
.
Resize
(
pre_state
->
dims
());
state_pre
.
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
detail
::
ReorderInitialState
(
some_meta
,
*
pre_state
,
&
state_pre
,
pre_state
->
place
());
}
LoDTensor
*
pre_state
{
nullptr
};
if
(
step
==
0
)
{
pre_state
=
cache_
.
GetTensor
(
*
cache_
.
scope
,
memory
.
boot_var
);
pre_state
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
// allocate memory
state_pre
.
Resize
(
pre_state
->
dims
());
state_pre
.
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
detail
::
ReorderBootState
<
value_type
>
(
some_meta
,
*
pre_state
,
&
state_pre
,
pre_state
->
place
());
}
else
{
pre_state
=
cache_
.
GetTensor
(
cache_
.
GetScope
(
step
-
1
),
memory
.
var
);
}
void
RNNAlgorithm
::
ExportInitialStateGradient
(
const
rnn
::
StateAttr
&
state
)
{
// all the step_inputs' metas should be the same, just randomly select one
// and get the dyseq meta.
const
auto
&
some_meta
=
dy_seq_metas_
[
arg_
.
inlinks
.
front
()];
auto
&
scope
=
cache_
.
GetScope
(
0
);
// shink and share from previous state
auto
shrinked_pre_state
=
pre_state
->
Slice
(
0
,
num_instances
);
state_pre
.
ShareDataWith
(
shrinked_pre_state
);
auto
&
state_pre
=
*
cache_
.
GetTensor
(
scope
,
state
.
pre_var
);
auto
&
pre_state
=
*
cache_
.
GetTensor
(
*
cache_
.
scope
,
state
.
boot_var
);
pre_state
.
Resize
(
state_pre
.
dims
());
detail
::
RestoreInitialState
(
some_meta
,
state_pre
,
&
pre_state
,
pre_state
.
place
());
}
void
DynamicRecurrentOp
::
ArgCache
::
Init
(
const
rnn
::
ArgumentName
&
name
,
const
paddle
::
framework
::
OperatorBase
&
op
,
const
paddle
::
framework
::
Scope
&
scope
,
rnn
::
Argument
*
arg
)
{
void
RNNAlgorithm
::
ArgCache
::
Init
(
const
rnn
::
ArgumentName
&
name
,
const
paddle
::
framework
::
OperatorBase
&
op
,
const
paddle
::
framework
::
Scope
&
scope
,
platform
::
DeviceContext
const
*
dev_ctx
,
rnn
::
Argument
*
arg
)
{
this
->
scope
=
&
scope
;
InitArgument
(
name
,
op
,
arg
);
CacheScopes
(
scope
,
*
arg
);
CacheInlinks
(
scope
,
arg
->
inlinks
);
CacheOutlinks
(
scope
,
arg
->
outlinks
);
this
->
dev_ctx
=
dev_ctx
;
}
void
DynamicRecurrentOp
::
ArgCache
::
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
rnn
::
Argument
*
arg
)
{
void
RNNAlgorithm
::
ArgCache
::
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
rnn
::
Argument
*
arg
)
{
rnn
::
InitArgument
(
name
,
arg
,
op
,
false
/*is_grad*/
);
}
void
DynamicRecurrentOp
::
ArgCache
::
CacheScopes
(
const
Scope
&
scope
,
const
rnn
::
Argument
&
arg
)
{
void
RNNAlgorithm
::
ArgCache
::
CacheScopes
(
const
Scope
&
scope
,
const
rnn
::
Argument
&
arg
)
{
auto
scopes_var
=
scope
.
FindVar
(
arg
.
step_scopes
);
PADDLE_ENFORCE
(
scopes_var
!=
nullptr
,
"the step_scopes output argument [%s] should be created first "
...
...
@@ -289,45 +328,85 @@ void DynamicRecurrentOp::ArgCache::CacheScopes(const Scope& scope,
this
->
scopes
=
scopes_var
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
}
void
DynamicRecurrentOp
::
ArgCache
::
CacheInlinks
(
void
RNNAlgorithm
::
ArgCache
::
CacheInlinks
(
const
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
names
)
{
for
(
auto
name
:
names
)
{
auto
*
var
=
GetVariable
(
scope
,
name
);
in
link
s
[
name
]
=
var
;
in
put
s
[
name
]
=
var
;
}
}
void
DynamicRecurrentOp
::
ArgCache
::
CacheOutlinks
(
void
RNNAlgorithm
::
ArgCache
::
CacheOutlinks
(
const
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
names
)
{
for
(
auto
name
:
names
)
{
auto
*
var
=
GetVariable
(
scope
,
name
);
out
link
s
[
name
]
=
var
;
out
put
s
[
name
]
=
var
;
}
}
Variable
*
DynamicRecurrentOp
::
ArgCache
::
GetVariable
(
const
Scope
&
scope
,
const
std
::
string
&
name
)
{
Variable
*
RNNAlgorithm
::
ArgCache
::
GetVariable
(
const
Scope
&
scope
,
const
std
::
string
&
name
)
{
auto
*
var
=
scope
.
FindVar
(
name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"variable [%s] not exist in scope"
,
name
);
return
var
;
}
LoDTensor
*
DynamicRecurrentOp
::
ArgCache
::
GetTensor
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
)
{
LoDTensor
*
RNNAlgorithm
::
ArgCache
::
GetTensor
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
)
{
auto
*
var
=
GetVariable
(
scope
,
name
);
return
var
->
GetMutable
<
LoDTensor
>
();
}
const
rnn
::
ArgumentName
DynamicRecurrentOp
::
kArgName
{
"step_net"
,
"step_scopes"
,
"inlinks"
,
"outlinks"
,
"memories"
,
"pre_memories"
,
"boot_memories"
};
const
std
::
array
<
rnn
::
ArgumentName
,
2
>
RNNAlgorithm
::
kArgNames
{
rnn
::
ArgumentName
{
"step_unit"
,
"step_scopes"
,
"inputs"
,
"outputs"
,
"states"
,
"ex_states"
,
"initial_states"
},
rnn
::
ArgumentName
{
"step_unit"
,
"step_scopes@GRAD"
,
"outputs@GRAD"
,
"inputs@GRAD"
,
"states"
,
"ex_states"
,
"initial_states@GRAD"
}};
void
DynamicRecurrentOp
::
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
rnn
.
Run
<
RNNAlgorithm
::
ComputeMode
::
kForward
>
(
scope
,
*
dynamic_cast
<
const
OperatorBase
*>
(
this
),
dev_ctx
);
}
void
DynamicRecurrentGradientOp
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{}
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
rnn
.
Run
<
RNNAlgorithm
::
ComputeMode
::
kBackward
>
(
scope
,
*
dynamic_cast
<
const
OperatorBase
*>
(
this
),
dev_ctx
);
}
class
DynamicRecurrentOpProtoAndCheckerMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
DynamicRecurrentOpProtoAndCheckerMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
const
auto
&
name
=
RNNAlgorithm
::
kArgNames
[
RNNAlgorithm
::
ComputeMode
::
kForward
];
// inputs and outputs stored in proto
AddInput
(
name
.
inlinks
,
"the inputs that need to be segmented for each step."
)
.
AsDuplicable
();
AddInput
(
name
.
initial_states
,
"variables to initialize states."
)
.
AsDuplicable
();
AddOutput
(
name
.
outlinks
,
"the outputs that need to concated for all steps."
)
.
AsDuplicable
();
AddOutput
(
name
.
step_scopes
,
"step scopes"
);
// Attributes stored in AttributeMap
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
ex_states
,
"names of ex_states"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
states
,
"names of states"
);
AddComment
(
"This is a RNN operator for varience-length sequences."
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_WITHOUT_GRADIENT
(
dynamic_recurrent
,
paddle
::
operators
::
DynamicRecurrentOp
,
paddle
::
operators
::
DynamicRecurrentOpProtoAndCheckerMaker
);
REGISTER_OP
(
dynamic_recurrent
,
paddle
::
operators
::
DynamicRecurrentOp
,
paddle
::
operators
::
DynamicRecurrentOpProtoAndCheckerMaker
,
dynamic_recurrent_grad
,
paddle
::
operators
::
DynamicRecurrentGradientOp
);
paddle/operators/dynamic_recurrent_op.h
浏览文件 @
07ea9ade
...
...
@@ -27,47 +27,39 @@
namespace
paddle
{
namespace
operators
{
class
DynamicRecurrentOp
:
public
framework
::
OperatorBase
{
class
RNNAlgorithm
{
public:
static
const
rnn
::
ArgumentName
kArgName
;
enum
ComputeMode
{
kForward
=
0
,
kBackward
=
1
};
static
const
std
::
array
<
rnn
::
ArgumentName
,
2
>
kArgNames
;
using
value_type
=
float
;
DynamicRecurrentOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
DynamicRecurrentOp
(
const
DynamicRecurrentOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
// TODO(yuyang18): Implement copy ctor well.
PADDLE_THROW
(
"Not implemented"
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
;
/*
* Different `Run` method for forward and backward, `_` is just for template
* specifialization.
*/
template
<
ComputeMode
_
>
void
Run
(
const
framework
::
Scope
&
scope
,
const
framework
::
OperatorBase
&
op
,
const
platform
::
DeviceContext
&
dev_ctx
);
/*
* Split the inputs(LoDTensors) to segments for each time step.
*/
void
SplitInputs
()
const
;
void
SplitInputs
();
/*
* Create step-scopes to store temporary outputs in each time steps.
*/
void
CreateScopes
()
const
;
void
CreateScopes
();
/*
* Link TensorArray steps to the corresponding variables located in
* step-scopes.
*/
void
WriteStepInputs
()
const
;
void
WriteStepInputs
();
/*
* Write output of each step to the corresponding TensorArray.
*/
void
WriteStepOutputs
()
const
;
void
WriteStepOutputs
();
/*
* Initialize the states, each state will have a corresponding pre-state,
...
...
@@ -75,54 +67,83 @@ class DynamicRecurrentOp : public framework::OperatorBase {
* pre-state in the first time step will be initialized with an zero tensor or
* a tensor in parent scope if is provided.
*/
void
InitStates
()
const
;
void
InitStates
();
/*
* Create state variables for each time step.
*/
void
CreateState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
;
void
CreateState
(
const
rnn
::
StateAttr
&
state
,
size_t
step
)
;
/*
* Link pre-state variable in current scope to the state variable in the
* previous time step (scope).
* previous time step (scope) by reference.
*/
void
LinkState
(
const
rnn
::
StateAttr
&
state
,
size_t
step
);
/*
* Link the pre-state of the first time step to the `boot-state` in parent's
* scope.
*/
void
LinkInitialState
(
const
rnn
::
StateAttr
&
state
);
/*
* Copy the gradient from `pre-state` in the first step-scope to the
* `boot-state` in parent's scope.
*/
void
ExportInitialStateGradient
(
const
rnn
::
StateAttr
&
state
);
/*
* Calculate time steps.
*/
void
LinkState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
;
void
RunSteps
()
;
/*
* Concatenate outputs in each time step and generate a LoDTensor.
*/
void
ConcatOutputs
()
const
;
void
ConcatOutputs
();
void
SetComputeMode
(
ComputeMode
mode
)
{
mode_
=
mode
;
}
bool
IsForward
()
const
{
return
mode_
==
ComputeMode
::
kForward
;
}
bool
IsBackward
()
const
{
return
mode_
==
ComputeMode
::
kBackward
;
}
/*
* set a step
net that is created according to a RecurrentOp's stepne
t.
* set a step
unit that is created according to a RecurrentOp's step uni
t.
*/
void
SetStep
Net
(
std
::
unique_ptr
<
OperatorBase
>
ne
t
)
{
PADDLE_ENFORCE_NOT_NULL
(
ne
t
);
step
net_
=
std
::
move
(
ne
t
);
void
SetStep
Unit
(
std
::
unique_ptr
<
framework
::
OperatorBase
>
step_uni
t
)
{
PADDLE_ENFORCE_NOT_NULL
(
step_uni
t
);
step
_unit_
=
std
::
move
(
step_uni
t
);
}
const
OperatorBase
&
GetStepNet
()
const
{
return
*
stepne
t_
;
}
const
framework
::
OperatorBase
&
GetStepUnit
()
const
{
return
*
step_uni
t_
;
}
const
framework
::
TensorArray
&
state
(
const
std
::
string
&
name
)
const
{
return
states_
[
name
];
auto
it
=
states_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
states_
.
end
());
return
it
->
second
;
}
const
framework
::
TensorArray
&
step_input
(
const
std
::
string
&
name
)
const
{
return
step_inputs_
[
name
];
auto
it
=
step_inputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
step_inputs_
.
end
());
return
it
->
second
;
}
const
framework
::
TensorArray
&
step_output
(
const
std
::
string
&
name
)
const
{
return
step_outputs_
[
name
];
auto
it
=
step_outputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
step_outputs_
.
end
());
return
it
->
second
;
}
protected:
struct
ArgCache
{
framework
::
Scope
const
*
scope
;
std
::
vector
<
framework
::
Scope
*>*
scopes
;
std
::
map
<
std
::
string
,
framework
::
Variable
*>
inlinks
;
std
::
map
<
std
::
string
,
framework
::
Variable
*>
outlinks
;
std
::
map
<
std
::
string
,
framework
::
Variable
*>
inputs
;
std
::
map
<
std
::
string
,
framework
::
Variable
*>
outputs
;
platform
::
DeviceContext
const
*
dev_ctx
;
size_t
num_steps
{
0
};
void
Init
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
const
framework
::
Scope
&
scope
,
rnn
::
Argument
*
arg
);
void
Init
(
const
rnn
::
ArgumentName
&
name
,
const
framework
::
OperatorBase
&
op
,
const
framework
::
Scope
&
scope
,
platform
::
DeviceContext
const
*
dev_ctx
,
rnn
::
Argument
*
arg
);
framework
::
Scope
&
GetScope
(
size_t
index
)
{
PADDLE_ENFORCE_LT
(
index
,
num_steps
);
...
...
@@ -133,8 +154,8 @@ class DynamicRecurrentOp : public framework::OperatorBase {
const
std
::
string
&
name
);
private:
void
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
rnn
::
Argument
*
arg
);
void
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
framework
::
OperatorBase
&
op
,
rnn
::
Argument
*
arg
);
void
CacheScopes
(
const
framework
::
Scope
&
scope
,
const
rnn
::
Argument
&
arg
);
void
CacheInlinks
(
const
framework
::
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
names
);
...
...
@@ -145,27 +166,49 @@ class DynamicRecurrentOp : public framework::OperatorBase {
};
private:
std
::
unique_ptr
<
OperatorBase
>
stepne
t_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
states_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_inputs_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_outputs_
;
mutable
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
DySeqMeta
>>
dy_seq_metas
_
;
mutable
rnn
::
Argument
arg
_
;
mutable
ArgCache
cache_
;
std
::
unique_ptr
<
framework
::
OperatorBase
>
step_uni
t_
;
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
states_
;
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_inputs_
;
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_outputs_
;
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
DySeqMeta
>>
dy_seq_metas_
;
rnn
::
Argument
arg
_
;
ArgCache
cache
_
;
ComputeMode
mode_
{
ComputeMode
::
kForward
}
;
#ifdef PADDLE_WITH_TESTING
friend
class
DynamicRecurrentOpTestHelper
;
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
SplitInputs
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
CreateCache
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
CreateScopes
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
WriteStepInputs
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
WriteStepOutputs
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
InitStates
);
FRIEND_TEST
(
DynamicRecurrentOpTestHelper
,
ConcatOutputs
);
// test forward
friend
class
RNNAlgorithmTestHelper
;
FRIEND_TEST
(
RNNAlgorithmTestHelper
,
SplitInputs
);
FRIEND_TEST
(
RNNAlgorithmTestHelper
,
CreateCache
);
FRIEND_TEST
(
RNNAlgorithmTestHelper
,
CreateScopes
);
FRIEND_TEST
(
RNNAlgorithmTestHelper
,
WriteStepInputs
);
FRIEND_TEST
(
RNNAlgorithmTestHelper
,
WriteStepOutputs
);
FRIEND_TEST
(
RNNAlgorithmTestHelper
,
InitStates
);
FRIEND_TEST
(
RNNAlgorithmTestHelper
,
ConcatOutputs
);
// TODO(superjom) test backward
#endif
};
class
DynamicRecurrentOp
:
public
framework
::
OperatorBase
{
public:
DynamicRecurrentOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
DynamicRecurrentOp
(
const
DynamicRecurrentOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
PADDLE_THROW
(
"Not implemented"
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
;
mutable
RNNAlgorithm
rnn
;
};
class
DynamicRecurrentGradientOp
:
public
framework
::
OperatorBase
{
public:
DynamicRecurrentGradientOp
(
const
std
::
string
&
type
,
...
...
@@ -174,8 +217,16 @@ class DynamicRecurrentGradientOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
DynamicRecurrentGradientOp
(
const
DynamicRecurrentGradientOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
PADDLE_THROW
(
"Not implemented"
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
;
mutable
RNNAlgorithm
rnn
;
};
}
// namespace operators
...
...
paddle/operators/dynamic_recurrent_op_test.cc
浏览文件 @
07ea9ade
...
...
@@ -43,16 +43,16 @@ LoDTensor* CreateVar(Scope& scope, std::string name, framework::DDim dims,
return
tensor
;
}
class
DynamicRecurrentOp
TestHelper
:
public
::
testing
::
Test
{
class
RNNAlgorithm
TestHelper
:
public
::
testing
::
Test
{
protected:
const
rnn
::
ArgumentName
argname
=
DynamicRecurrentOp
::
kArgName
;
const
rnn
::
ArgumentName
argname
=
RNNAlgorithm
::
kArgNames
[
0
]
;
virtual
void
SetUp
()
override
{
CreateGlobalVariables
();
auto
op_desc
=
CreateOpDesc
();
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
,
nullptr
);
dop
=
dynamic_cast
<
DynamicRecurrentOp
*>
(
op
.
get
()
);
dop
=
&
(
dynamic_cast
<
DynamicRecurrentOp
*>
(
op
.
get
())
->
rnn
);
InitCacheManually
();
InitStepNet
();
}
...
...
@@ -63,20 +63,20 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test {
op_desc
.
set_type
(
"dynamic_recurrent"
);
OpDescNewVar
(
argname
.
inlinks
,
{
"in0"
},
op_desc
.
add_inputs
());
OpDescNewVar
(
argname
.
boot_memori
es
,
{
"boot_mem"
},
op_desc
.
add_inputs
());
OpDescNewVar
(
argname
.
initial_stat
es
,
{
"boot_mem"
},
op_desc
.
add_inputs
());
OpDescNewVar
(
argname
.
step_scopes
,
{
"step_scopes"
},
op_desc
.
add_outputs
());
OpDescNewVar
(
argname
.
outlinks
,
{
"out0"
},
op_desc
.
add_outputs
());
// set pre-
memori
es
// set pre-
stat
es
auto
pre_memories
=
op_desc
.
mutable_attrs
()
->
Add
();
pre_memories
->
set_name
(
argname
.
pre_memori
es
);
pre_memories
->
set_name
(
argname
.
ex_stat
es
);
pre_memories
->
set_type
(
paddle
::
framework
::
AttrType
::
STRINGS
);
auto
pre_memories_item
=
pre_memories
->
add_strings
();
*
pre_memories_item
=
"mem@pre"
;
// set
memori
es
// set
stat
es
auto
memories
=
op_desc
.
mutable_attrs
()
->
Add
();
memories
->
set_name
(
argname
.
memori
es
);
memories
->
set_name
(
argname
.
stat
es
);
memories
->
set_type
(
paddle
::
framework
::
AttrType
::
STRINGS
);
auto
memories_item
=
memories
->
add_strings
();
*
memories_item
=
"mem"
;
...
...
@@ -113,32 +113,33 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test {
}
void
InitCacheManually
()
{
dop
->
cache_
.
Init
(
DynamicRecurrentOp
::
kArgName
,
*
dop
,
scope
,
&
dop
->
arg_
);
dop
->
cache_
.
Init
(
RNNAlgorithm
::
kArgNames
[
0
],
*
op
,
scope
,
&
device_context
,
&
dop
->
arg_
);
}
void
InitStepNet
()
{
std
::
unique_ptr
<
framework
::
OperatorBase
>
stepnet
{
new
NetOp
};
dynamic_cast
<
NetOp
*>
(
stepnet
.
get
())
->
AppendOp
(
std
::
unique_ptr
<
TestOp
>
(
new
TestOp
(
"test"
,
{{
"in
links"
,
{
"in0"
}},
{
"boot_memori
es"
,
{
"boot_mem"
}}},
{{
"out
link
s"
,
{
"out0"
}},
{
"step_scopes"
,
{
"step_scopes"
}}},
{})));
dop
->
SetStep
Ne
t
(
std
::
move
(
stepnet
));
"test"
,
{{
"in
puts"
,
{
"in0"
}},
{
"initial_stat
es"
,
{
"boot_mem"
}}},
{{
"out
put
s"
,
{
"out0"
}},
{
"step_scopes"
,
{
"step_scopes"
}}},
{})));
dop
->
SetStep
Uni
t
(
std
::
move
(
stepnet
));
}
protected:
DynamicRecurrentOp
*
dop
;
RNNAlgorithm
*
dop
;
std
::
unique_ptr
<
framework
::
OperatorBase
>
op
;
paddle
::
platform
::
CPUDeviceContext
device_context
;
paddle
::
framework
::
Scope
scope
;
};
TEST_F
(
DynamicRecurrentOp
TestHelper
,
CreateCache
)
{
TEST_F
(
RNNAlgorithm
TestHelper
,
CreateCache
)
{
const
rnn
::
Argument
&
arg
=
dop
->
arg_
;
ASSERT_EQ
(
arg
.
inlinks
.
size
(),
1UL
);
ASSERT_EQ
(
arg
.
outlinks
.
size
(),
1UL
);
}
TEST_F
(
DynamicRecurrentOp
TestHelper
,
SplitInputs
)
{
TEST_F
(
RNNAlgorithm
TestHelper
,
SplitInputs
)
{
dop
->
SplitInputs
();
auto
&
in0_ta
=
dop
->
step_inputs_
[
"in0"
];
ASSERT_EQ
(
in0_ta
.
size
(),
4UL
);
...
...
@@ -153,14 +154,14 @@ TEST_F(DynamicRecurrentOpTestHelper, SplitInputs) {
EXPECT_EQ
(
batch3
.
dims
()[
0
],
1
);
}
TEST_F
(
DynamicRecurrentOp
TestHelper
,
CreateScopes
)
{
TEST_F
(
RNNAlgorithm
TestHelper
,
CreateScopes
)
{
dop
->
SplitInputs
();
dop
->
CreateScopes
();
ASSERT_EQ
(
dop
->
cache_
.
num_steps
,
4UL
);
ASSERT_EQ
(
dop
->
cache_
.
scopes
->
size
(),
4UL
);
}
TEST_F
(
DynamicRecurrentOp
TestHelper
,
WriteStepInputs
)
{
TEST_F
(
RNNAlgorithm
TestHelper
,
WriteStepInputs
)
{
dop
->
SplitInputs
();
dop
->
CreateScopes
();
dop
->
WriteStepInputs
();
...
...
@@ -173,7 +174,7 @@ TEST_F(DynamicRecurrentOpTestHelper, WriteStepInputs) {
}
}
TEST_F
(
DynamicRecurrentOp
TestHelper
,
WriteStepOutputs
)
{
TEST_F
(
RNNAlgorithm
TestHelper
,
WriteStepOutputs
)
{
dop
->
SplitInputs
();
dop
->
CreateScopes
();
dop
->
WriteStepInputs
();
...
...
@@ -187,11 +188,12 @@ TEST_F(DynamicRecurrentOpTestHelper, WriteStepOutputs) {
}
}
TEST_F
(
DynamicRecurrentOp
TestHelper
,
ConcatOutputs
)
{
TEST_F
(
RNNAlgorithm
TestHelper
,
ConcatOutputs
)
{
// Let's leave this test to python unittest.
}
TEST_F
(
DynamicRecurrentOpTestHelper
,
InitStates
)
{
TEST_F
(
RNNAlgorithmTestHelper
,
InitStates
)
{
dop
->
SetComputeMode
(
RNNAlgorithm
::
ComputeMode
::
kForward
);
dop
->
SplitInputs
();
dop
->
CreateScopes
();
dop
->
WriteStepInputs
();
...
...
@@ -208,12 +210,6 @@ TEST_F(DynamicRecurrentOpTestHelper, InitStates) {
auto
*
boot_state
=
scope
.
FindVar
(
"boot_mem"
);
ASSERT_TRUE
(
boot_state
!=
nullptr
);
if
(
step
==
0
)
{
// check pre_state is a reference of boot_state
ASSERT_EQ
(
boot_state
->
Get
<
LoDTensor
>
().
data
<
float
>
(),
pre_state
->
Get
<
LoDTensor
>
().
data
<
float
>
());
}
}
}
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
07ea9ade
...
...
@@ -42,7 +42,7 @@ void RecurrentAlgorithm::Run(const Scope& scope,
for
(
size_t
step_id
=
0
;
step_id
<
seq_len
;
step_id
++
)
{
if
(
step_id
>
0
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memori
es
,
step_id
,
-
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
stat
es
,
step_id
,
-
1
);
}
(
*
stepnet_
)
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
}
...
...
@@ -59,7 +59,8 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope,
// Now all variables in scope must be created outside of op.
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"stepnet_ op has no outputs"
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"step_unit_ op has no outputs"
);
if
(
seq_len
>
step_scopes
->
size
())
{
for
(
size_t
i
=
step_scopes
->
size
();
i
<
seq_len
;
++
i
)
{
...
...
@@ -86,7 +87,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope,
}
void
RecurrentAlgorithm
::
InitMemories
(
Scope
*
step_scope
)
const
{
for
(
auto
&
attr
:
arg_
->
memori
es
)
{
for
(
auto
&
attr
:
arg_
->
stat
es
)
{
auto
*
pre_mem
=
step_scope
->
Var
(
attr
.
pre_var
)
->
GetMutable
<
LoDTensor
>
();
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
boot_var
)
!=
nullptr
,
"memory [%s]'s boot variable [%s] not exists"
,
attr
.
var
,
...
...
@@ -100,12 +101,12 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope) const {
}
const
rnn
::
ArgumentName
RecurrentOp
::
kArgName
{
"step_net"
,
"step_scopes"
,
"inlinks"
,
"outlink
s"
,
"
memories"
,
"pre_memories"
,
"boot_memori
es"
};
"step_net"
,
"step_scopes"
,
"inputs"
,
"output
s"
,
"
states"
,
"ex_states"
,
"initial_stat
es"
};
const
rnn
::
ArgumentName
RecurrentGradientOp
::
kArgName
{
"step_net"
,
"step_scopes@GRAD"
,
"out
links@GRAD"
,
"inlink
s@GRAD"
,
"
memories"
,
"pre_memories"
,
"boot_memori
es@GRAD"
};
"step_net"
,
"step_scopes@GRAD"
,
"out
puts@GRAD"
,
"input
s@GRAD"
,
"
states"
,
"ex_states"
,
"initial_stat
es@GRAD"
};
RecurrentOp
::
RecurrentOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
...
...
@@ -127,7 +128,7 @@ class RecurrentAlgorithmProtoAndCheckerMaker
AddInput
(
name
.
inlinks
,
"the inputs that need to be segmented for each step."
)
.
AsDuplicable
();
AddInput
(
name
.
boot_memories
,
"variables to initialize memori
es."
)
AddInput
(
name
.
initial_states
,
"variables to initialize stat
es."
)
.
AsDuplicable
();
AddOutput
(
name
.
outlinks
,
"the outputs that need to concated for all steps."
)
...
...
@@ -135,9 +136,8 @@ class RecurrentAlgorithmProtoAndCheckerMaker
AddOutput
(
name
.
step_scopes
,
"step scopes"
);
// Attributes stored in AttributeMap
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memories
,
"names of pre-memories"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
memories
,
"names of memories"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
ex_states
,
"names of pre-states"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
states
,
"names of states"
);
AddComment
(
"This is a recurrent group operator."
);
}
...
...
@@ -152,7 +152,7 @@ void RecurrentGradientAlgorithm::Run(
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len
);
for
(
int
step_id
=
seq_len
-
1
;
step_id
>=
0
;
--
step_id
)
{
if
(
static_cast
<
size_t
>
(
step_id
)
!=
seq_len
-
1
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memori
es
,
step_id
,
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
stat
es
,
step_id
,
1
);
}
(
*
stepnet_
)
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
}
...
...
@@ -162,7 +162,7 @@ void RecurrentGradientAlgorithm::Run(
void
RecurrentGradientAlgorithm
::
LinkBootMemoryGradients
(
Scope
*
step_scope
)
const
{
for
(
auto
&
attr
:
arg_
->
memori
es
)
{
for
(
auto
&
attr
:
arg_
->
stat
es
)
{
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
var
)
!=
nullptr
,
"memory variable [%s] does not exists"
,
attr
.
var
);
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
boot_var
)
!=
nullptr
,
...
...
paddle/operators/rnn/recurrent_op_utils.cc
浏览文件 @
07ea9ade
...
...
@@ -36,7 +36,7 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
LoDTensor
*
input
=
input_var
->
GetMutable
<
LoDTensor
>
();
f
::
DDim
dims
=
input
->
dims
();
PADDLE_ENFORCE_EQ
(
static_cast
<
size_t
>
(
dims
[
0
]),
seq_len
,
"all the in
link
s be the same length"
);
"all the in
put
s be the same length"
);
f
::
DDim
step_dims
=
slice_ddim
(
dims
,
1
,
dims
.
size
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_input
=
...
...
@@ -78,7 +78,7 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
}
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
scopes
,
const
std
::
vector
<
rnn
::
Memory
Attr
>&
memories
,
const
std
::
vector
<
rnn
::
State
Attr
>&
memories
,
const
size_t
step_id
,
const
int
offset
)
{
PADDLE_ENFORCE_LT
(
step_id
,
scopes
.
size
(),
"step [%d] is out of range of step scopes' size [%d]"
,
...
...
@@ -106,26 +106,26 @@ void InitArgument(const ArgumentName& name, Argument* arg,
arg
->
inlinks
=
op
.
Inputs
(
name
.
inlinks
);
arg
->
outlinks
=
op
.
Outputs
(
name
.
outlinks
);
auto
&
boot_memories
=
is_grad
?
op
.
Outputs
(
name
.
boot_memories
)
:
op
.
Inputs
(
name
.
boot_memori
es
);
auto
&
boot_memories
=
is_grad
?
op
.
Outputs
(
name
.
initial_states
)
:
op
.
Inputs
(
name
.
initial_stat
es
);
// attributes
auto
&
memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
memori
es
);
auto
&
pre_memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memori
es
);
auto
&
memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
stat
es
);
auto
&
pre_memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
ex_stat
es
);
PADDLE_ENFORCE
(
memories
.
size
()
==
boot_memories
.
size
(),
"the size of
memories, boot_memori
es don't match:%d,%d"
,
"the size of
states, initial_stat
es don't match:%d,%d"
,
memories
.
size
(),
boot_memories
.
size
());
PADDLE_ENFORCE
(
pre_memories
.
size
()
==
boot_memories
.
size
(),
"the size of
pre_memories, boot_memori
es don't match:%d,%d"
,
"the size of
ex_states, initial_stat
es don't match:%d,%d"
,
pre_memories
.
size
(),
boot_memories
.
size
());
PADDLE_ENFORCE
(
memories
.
size
()
>
0
,
"more than 1
memori
es should be set"
);
PADDLE_ENFORCE
(
memories
.
size
()
>
0
,
"more than 1
stat
es should be set"
);
for
(
size_t
i
=
0
;
i
<
memories
.
size
();
++
i
)
{
rnn
::
Memory
Attr
mem_attr
;
rnn
::
State
Attr
mem_attr
;
mem_attr
.
var
=
memories
[
i
];
mem_attr
.
pre_var
=
pre_memories
[
i
];
mem_attr
.
boot_var
=
boot_memories
[
i
];
(
arg
->
memori
es
).
push_back
(
mem_attr
);
(
arg
->
stat
es
).
push_back
(
mem_attr
);
}
}
...
...
paddle/operators/rnn/recurrent_op_utils.h
浏览文件 @
07ea9ade
...
...
@@ -31,7 +31,7 @@ using Scope = framework::Scope;
* boot memories in father scope. Other attributes are copied from Op's proto
* attributes.
*/
struct
Memory
Attr
{
struct
State
Attr
{
// name of current state variable
std
::
string
var
;
// name of previous step's state variable
...
...
@@ -46,7 +46,7 @@ struct Argument {
std
::
string
step_scopes
;
std
::
vector
<
std
::
string
>
inlinks
;
std
::
vector
<
std
::
string
>
outlinks
;
std
::
vector
<
rnn
::
MemoryAttr
>
memori
es
;
std
::
vector
<
rnn
::
StateAttr
>
stat
es
;
};
struct
ArgumentName
{
...
...
@@ -54,9 +54,9 @@ struct ArgumentName {
std
::
string
step_scopes
;
std
::
string
inlinks
;
std
::
string
outlinks
;
std
::
string
memories
;
// the memory name
std
::
string
pre_memories
;
// the previous memory name
std
::
string
boot_memori
es
;
// the boot memory name
std
::
string
states
;
// the memory name
std
::
string
ex_states
;
// the previous memory name
std
::
string
initial_stat
es
;
// the boot memory name
};
/**
...
...
@@ -74,7 +74,7 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
const
size_t
seq_len
,
const
platform
::
DeviceContext
&
ctx
);
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Memory
Attr
>&
memories
,
const
size_t
step_id
,
const
std
::
vector
<
State
Attr
>&
memories
,
const
size_t
step_id
,
const
int
offset
);
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
...
...
paddle/pybind/pybind.cc
浏览文件 @
07ea9ade
...
...
@@ -413,18 +413,18 @@ All parameter, weight, gradient are variables in Paddle.
return
static_cast
<
operators
::
DynamicRecurrentOp
*>
(
rnn_op
.
release
());
})
.
def
(
"set_step
ne
t"
,
.
def
(
"set_step
_uni
t"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
operators
::
NetOp
&
net
)
->
void
{
self
.
SetStepNe
t
(
net
.
Clone
());
})
->
void
{
self
.
rnn
.
SetStepUni
t
(
net
.
Clone
());
})
.
def
(
"get_state"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
std
::
string
&
name
)
->
const
TensorArray
&
{
return
self
.
state
(
name
);
})
->
const
TensorArray
&
{
return
self
.
rnn
.
state
(
name
);
})
.
def
(
"get_step_input"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
std
::
string
&
name
)
->
const
TensorArray
&
{
return
self
.
step_input
(
name
);
})
->
const
TensorArray
&
{
return
self
.
rnn
.
step_input
(
name
);
})
.
def
(
"get_step_output"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
std
::
string
&
name
)
->
const
TensorArray
&
{
return
self
.
step_output
(
name
);
});
->
const
TensorArray
&
{
return
self
.
rnn
.
step_output
(
name
);
});
// cond_op
py
::
class_
<
operators
::
CondOp
,
OperatorBase
>
(
m
,
"CondOp"
)
...
...
python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py
浏览文件 @
07ea9ade
...
...
@@ -4,6 +4,12 @@ import unittest
from
paddle.v2.framework.op
import
Operator
,
DynamicRecurrentOp
import
numpy
as
np
# for siplicity, just one level LoD
lod_py
=
[[
0
,
4
,
7
,
9
,
10
]]
input_dim
=
30
num_sents
=
len
(
lod_py
[
0
])
-
1
weight_dim
=
15
def
create_tensor
(
scope
,
name
,
shape
,
np_data
):
tensor
=
scope
.
var
(
name
).
get_tensor
()
...
...
@@ -12,6 +18,17 @@ def create_tensor(scope, name, shape, np_data):
return
tensor
class
PyRNNStep
(
object
):
def
__init__
(
self
):
self
.
x
=
np
.
random
.
normal
(
size
=
(
lod_py
[
0
][
-
1
],
input_dim
)).
astype
(
"float32"
)
self
.
W
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
)).
astype
(
"float32"
)
self
.
U
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
)).
astype
(
"float32"
)
self
.
h_boot
=
np
.
random
.
normal
(
size
=
(
num_sents
,
input_dim
)).
astype
(
"float32"
)
class
DynamicRecurrentOpTest
(
unittest
.
TestCase
):
'''
Test RNNOp
...
...
@@ -23,17 +40,13 @@ class DynamicRecurrentOpTest(unittest.TestCase):
- U
vars:
- x
memori
es:
stat
es:
- h
outputs:
- h
'''
# for siplicity, just one level LoD
lod_py
=
[[
0
,
4
,
7
,
9
,
10
]]
input_dim
=
30
num_sents
=
len
(
lod_py
[
0
])
-
1
weight_dim
=
15
py
=
PyRNNStep
()
def
forward
(
self
):
self
.
scope
=
core
.
Scope
()
...
...
@@ -42,64 +55,55 @@ class DynamicRecurrentOpTest(unittest.TestCase):
self
.
create_step_net
()
ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
self
.
rnnop
.
run
(
self
.
scope
,
ctx
)
state
=
self
.
rnnop
.
get_state
(
"h@
mem
"
)
state
=
self
.
rnnop
.
get_state
(
"h@
state
"
)
print
'state size: '
,
state
.
size
()
step_inputs
=
self
.
rnnop
.
get_step_input
(
"x"
)
print
"x size "
,
step_inputs
.
size
()
for
i
in
range
(
step_inputs
.
size
()):
print
"x %d"
%
i
,
np
.
array
(
step_inputs
.
read
(
i
).
get_dims
())
step_outputs
=
self
.
rnnop
.
get_step_output
(
'h@
mem
'
)
step_outputs
=
self
.
rnnop
.
get_step_output
(
'h@
state
'
)
print
'step_outputs.size '
,
step_outputs
.
size
()
output
=
self
.
scope
.
find_var
(
"h@mem"
).
get_tensor
()
output
=
self
.
scope
.
find_var
(
"h@state"
).
get_tensor
()
print
'output'
,
np
.
array
(
output
).
shape
def
create_global_variables
(
self
):
x
=
np
.
random
.
normal
(
size
=
(
self
.
lod_py
[
0
][
-
1
],
self
.
input_dim
)).
astype
(
"float32"
)
W
=
np
.
random
.
normal
(
size
=
(
self
.
input_dim
,
self
.
input_dim
)).
astype
(
"float32"
)
U
=
np
.
random
.
normal
(
size
=
(
self
.
input_dim
,
self
.
input_dim
)).
astype
(
"float32"
)
h_boot
=
np
.
random
.
normal
(
size
=
(
self
.
num_sents
,
self
.
input_dim
)).
astype
(
"float32"
)
# create inlink
x_tensor
=
create_tensor
(
self
.
scope
,
"x"
,
[
self
.
num_sents
,
self
.
input_dim
],
x
)
x_tensor
.
set_lod
(
self
.
lod_py
)
create_tensor
(
self
.
scope
,
"W"
,
[
self
.
input_dim
,
self
.
input_dim
],
W
)
create_tensor
(
self
.
scope
,
"U"
,
[
self
.
input_dim
,
self
.
input_dim
],
U
)
create_tensor
(
self
.
scope
,
"h_boot"
,
[
self
.
num_sents
,
self
.
input_dim
],
h_boot
)
x_tensor
=
create_tensor
(
self
.
scope
,
"x"
,
[
num_sents
,
input_dim
],
self
.
py
.
x
)
x_tensor
.
set_lod
(
lod_py
)
create_tensor
(
self
.
scope
,
"W"
,
[
input_dim
,
input_dim
],
self
.
py
.
W
)
create_tensor
(
self
.
scope
,
"U"
,
[
input_dim
,
input_dim
],
self
.
py
.
U
)
create_tensor
(
self
.
scope
,
"h_boot"
,
[
num_sents
,
input_dim
],
self
.
py
.
h_boot
)
self
.
scope
.
var
(
"step_scopes"
)
self
.
scope
.
var
(
"h@
mem
"
)
self
.
scope
.
var
(
"h@
state
"
)
def
create_rnn_op
(
self
):
# create RNNOp
self
.
rnnop
=
DynamicRecurrentOp
(
# inputs
in
link
s
=
[
"x"
],
boot_memori
es
=
[
"h_boot"
],
step_net
=
"step
ne
t"
,
in
put
s
=
[
"x"
],
initial_stat
es
=
[
"h_boot"
],
step_net
=
"step
_uni
t"
,
# outputs
out
links
=
[
"h@mem
"
],
out
puts
=
[
"h@state
"
],
step_scopes
=
"step_scopes"
,
# attributes
pre_memori
es
=
[
"h@pre"
],
memories
=
[
"h@mem
"
])
ex_stat
es
=
[
"h@pre"
],
states
=
[
"h@state
"
])
def
create_step_net
(
self
):
step
ne
t
=
core
.
Net
.
create
()
step
_uni
t
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"sum"
,
X
=
[
"Wx"
,
"Uh"
],
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@
mem
"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@
state
"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
step
ne
t
.
append_op
(
op
)
step
ne
t
.
complete_add_op
(
True
)
self
.
rnnop
.
set_step
net
(
stepne
t
)
step
_uni
t
.
append_op
(
op
)
step
_uni
t
.
complete_add_op
(
True
)
self
.
rnnop
.
set_step
_unit
(
step_uni
t
)
def
test_forward
(
self
):
print
'test recurrent op forward'
...
...
@@ -107,5 +111,58 @@ class DynamicRecurrentOpTest(unittest.TestCase):
print
'pd_output'
,
pd_output
class
RecurrentGradientOpTest
(
unittest
.
TestCase
):
py
=
PyRNNStep
()
def
create_forward_op
(
self
):
# create RNNOp
self
.
forward_op
=
DynamicRecurrentOp
(
# inputs
inputs
=
[
"x"
],
initial_states
=
[
"h_boot"
],
step_net
=
"step_unit"
,
# outputs
outputs
=
[
"h@state"
],
step_scopes
=
"step_scopes"
,
# attributes
ex_states
=
[
"h@pre"
],
states
=
[
"h@state"
])
def
create_gradient_op
(
self
):
a
=
set
()
backward_op
=
core
.
DynamicRecurrentOp
.
backward
(
self
.
forward_op
,
a
)
def
create_step_net
(
self
):
step_unit
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"sum"
,
X
=
[
"Wx"
,
"Uh"
],
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@state"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
step_unit
.
append_op
(
op
)
step_unit
.
complete_add_op
(
True
)
self
.
forward_op
.
set_step_unit
(
step_unit
)
def
create_global_variables
(
self
):
# create inlink
x_tensor
=
create_tensor
(
self
.
scope
,
"x"
,
[
num_sents
,
input_dim
],
self
.
py
.
x
)
x_tensor
.
set_lod
(
lod_py
)
create_tensor
(
self
.
scope
,
"W"
,
[
input_dim
,
input_dim
],
self
.
py
.
W
)
create_tensor
(
self
.
scope
,
"U"
,
[
input_dim
,
input_dim
],
self
.
py
.
U
)
create_tensor
(
self
.
scope
,
"h_boot"
,
[
num_sents
,
input_dim
],
self
.
py
.
h_boot
)
self
.
scope
.
var
(
"step_scopes"
)
self
.
scope
.
var
(
"h@state"
)
def
test_grad
(
self
):
self
.
scope
=
core
.
Scope
()
self
.
create_forward_op
()
self
.
create_global_variables
()
self
.
create_step_net
()
self
.
create_gradient_op
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
07ea9ade
...
...
@@ -132,15 +132,15 @@ class RecurrentOpTest(unittest.TestCase):
# create RNNOp
self
.
rnnop
=
RecurrentOp
(
# inputs
in
link
s
=
[
"x"
],
boot_memori
es
=
[
"h_boot"
],
in
put
s
=
[
"x"
],
initial_stat
es
=
[
"h_boot"
],
step_net
=
"stepnet"
,
# outputs
out
link
s
=
[
"h@mem"
],
out
put
s
=
[
"h@mem"
],
step_scopes
=
"step_scopes"
,
# attributes
pre_memori
es
=
[
"h@pre"
],
memori
es
=
[
"h@mem"
])
ex_stat
es
=
[
"h@pre"
],
stat
es
=
[
"h@mem"
])
def
create_step_net
(
self
):
stepnet
=
core
.
Net
.
create
()
...
...
@@ -169,15 +169,15 @@ class RecurrentGradientOpTest(unittest.TestCase):
def
create_forward_op
(
self
):
self
.
forward_op
=
RecurrentOp
(
# inputs
in
link
s
=
[
"x"
],
boot_memori
es
=
[
"h_boot"
],
in
put
s
=
[
"x"
],
initial_stat
es
=
[
"h_boot"
],
step_net
=
"stepnet"
,
# outputs
out
link
s
=
[
"h"
],
out
put
s
=
[
"h"
],
step_scopes
=
"step_scopes"
,
# attributes
pre_memori
es
=
[
"h@pre"
],
memori
es
=
[
"h@alias"
])
ex_stat
es
=
[
"h@pre"
],
stat
es
=
[
"h@alias"
])
# create a stepnet for RNN
stepnet
=
core
.
Net
.
create
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录