未验证 提交 07e3b9a3 编写于 作者: W wanghuancoder 提交者: GitHub

api20, Bilinear add deprecated, and fix english doc (#26610)

* API2.0 del old api(BilinearTensorProduct) from nn init.py, test=develop

* add import for deprecated, test=develop

* modify deprecated location, test=develop

* fix english doc, test=develop

* Update __init__.py

* Update __init__.py

* Update common.py

* fix english doc, test=develop
Co-authored-by: NChen Weihang <chenweihang@baidu.com>
上级 84e7be31
......@@ -31,6 +31,7 @@ from ..data_feeder import check_variable_and_dtype, check_type
import numpy as np
import numbers
import logging
import paddle.utils.deprecated as deprecated
__all__ = [
'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
......@@ -2445,6 +2446,10 @@ class BilinearTensorProduct(layers.Layer):
dtype=self._dtype,
is_bias=True)
@deprecated(
since="2.0.0",
update_to="paddle.nn.Bilinear",
reason="New name and new args in Bilinear, easier to use.")
def forward(self, x, y):
check_variable_and_dtype(x, 'x', ['float32', 'float64'],
'BilinearTensorProduct')
......
......@@ -467,18 +467,7 @@ def bilinear(x1, x2, weight, bias=None, name=None):
"""
This layer performs bilinear on two inputs.
.. math::
out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,size-1
out = out + b
In this formula:
- :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
- :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
- :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
- :math:`out_{i}`: the i-th element of out, shape is [batch_size, out_features].
- :math:`b`: the learned bias, shape is [1, out_features].
- :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.
See :ref:`api_nn_Bilinear` for details and output shape.
Parameters:
x1 (Tensor): the first input tensor, it's data type should be float32, float64.
......@@ -489,7 +478,7 @@ def bilinear(x1, x2, weight, bias=None, name=None):
to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
Returns:
Variable: A 2-D Tensor of shape [batch_size, out_features].
Tensor: A 2-D Tensor of shape [batch_size, out_features].
Examples:
.. code-block:: python
......
......@@ -41,6 +41,7 @@ from .activation import Sigmoid #DEFINE_ALIAS
from .activation import LogSoftmax #DEFINE_ALIAS
from .activation import HSigmoid #DEFINE_ALIAS
from .common import BilinearTensorProduct #DEFINE_ALIAS
from .common import Bilinear #DEFINE_ALIAS
from .common import Pool2D #DEFINE_ALIAS
from .common import Pad2D #DEFINE_ALIAS
from .common import ReflectionPad1d #DEFINE_ALIAS
......
......@@ -360,7 +360,9 @@ class Bilinear(layers.Layer):
This layer performs bilinear on two inputs.
.. math::
out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,size-1
out = out + b
In this formula:
......@@ -389,7 +391,7 @@ class Bilinear(layers.Layer):
**bias** (Parameter): the learnable bias of this layer.
Returns:
Variable: A 2-D Tensor of shape [batch_size, out_features].
Tensor: A 2-D Tensor of shape [batch_size, out_features].
Examples:
.. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册