提交 07cb64ad 编写于 作者: L luotao1

add unit-test for chinese_ner

上级 823c4f87
...@@ -40,23 +40,20 @@ function (inference_analysis_test TARGET) ...@@ -40,23 +40,20 @@ function (inference_analysis_test TARGET)
endif(WITH_TESTING) endif(WITH_TESTING)
endfunction(inference_analysis_test) endfunction(inference_analysis_test)
set(DITU_RNN_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fmodel.tar.gz") function (inference_download_and_uncompress install_dir url gz_filename)
set(DITU_RNN_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fdata.txt.tar.gz")
set(DITU_INSTALL_DIR "${THIRD_PARTY_PATH}/install/ditu_rnn" CACHE PATH "Ditu RNN model and data root." FORCE)
set(DITU_RNN_MODEL ${DITU_INSTALL_DIR}/model)
set(DITU_RNN_DATA ${DITU_INSTALL_DIR}/data.txt)
function (inference_download_and_uncompress target url gz_filename)
message(STATUS "Download inference test stuff ${gz_filename} from ${url}") message(STATUS "Download inference test stuff ${gz_filename} from ${url}")
execute_process(COMMAND bash -c "mkdir -p ${DITU_INSTALL_DIR}") execute_process(COMMAND bash -c "mkdir -p ${install_dir}")
execute_process(COMMAND bash -c "cd ${DITU_INSTALL_DIR} && wget -q ${url}") execute_process(COMMAND bash -c "cd ${install_dir} && wget -q ${url}")
execute_process(COMMAND bash -c "cd ${DITU_INSTALL_DIR} && tar xzf ${gz_filename}") execute_process(COMMAND bash -c "cd ${install_dir} && tar xzf ${gz_filename}")
message(STATUS "finish downloading ${gz_filename}") message(STATUS "finish downloading ${gz_filename}")
endfunction(inference_download_and_uncompress) endfunction(inference_download_and_uncompress)
set(DITU_RNN_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fmodel.tar.gz")
set(DITU_RNN_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fdata.txt.tar.gz")
set(DITU_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/ditu_rnn" CACHE PATH "Ditu RNN model and data root." FORCE)
if (NOT EXISTS ${DITU_INSTALL_DIR}) if (NOT EXISTS ${DITU_INSTALL_DIR})
inference_download_and_uncompress(ditu_rnn_model ${DITU_RNN_MODEL_URL} "ditu_rnn_fluid%2Fmodel.tar.gz") inference_download_and_uncompress(${DITU_INSTALL_DIR} ${DITU_RNN_MODEL_URL} "ditu_rnn_fluid%2Fmodel.tar.gz")
inference_download_and_uncompress(ditu_rnn_data ${DITU_RNN_DATA_URL} "ditu_rnn_fluid%2Fdata.txt.tar.gz") inference_download_and_uncompress(${DITU_INSTALL_DIR} ${DITU_RNN_DATA_URL} "ditu_rnn_fluid%2Fdata.txt.tar.gz")
endif() endif()
inference_analysis_test(test_analyzer SRCS analyzer_tester.cc inference_analysis_test(test_analyzer SRCS analyzer_tester.cc
...@@ -87,3 +84,17 @@ inference_analysis_test(test_tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass_ ...@@ -87,3 +84,17 @@ inference_analysis_test(test_tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass_
inference_analysis_test(test_pass_manager SRCS pass_manager_tester.cc) inference_analysis_test(test_pass_manager SRCS pass_manager_tester.cc)
inference_analysis_test(test_tensorrt_subgraph_node_mark_pass SRCS tensorrt_subgraph_node_mark_pass_tester.cc) inference_analysis_test(test_tensorrt_subgraph_node_mark_pass SRCS tensorrt_subgraph_node_mark_pass_tester.cc)
inference_analysis_test(test_model_store_pass SRCS model_store_pass_tester.cc) inference_analysis_test(test_model_store_pass SRCS model_store_pass_tester.cc)
set(CHINESE_NER_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/chinese_ner_model.tar.gz")
set(CHINESE_NER_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/chinese_ner-data.txt.tar.gz")
set(CHINESE_NER_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/chinese_ner" CACHE PATH "Chinese ner model and data root." FORCE)
if (NOT EXISTS ${CHINESE_NER_INSTALL_DIR})
inference_download_and_uncompress(${CHINESE_NER_INSTALL_DIR} ${CHINESE_NER_MODEL_URL} "chinese_ner_model.tar.gz")
inference_download_and_uncompress(${CHINESE_NER_INSTALL_DIR} ${CHINESE_NER_DATA_URL} "chinese_ner-data.txt.tar.gz")
endif()
inference_analysis_test(test_chinese_ner SRCS chinese_ner_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api
ARGS --inference_model_dir=${PYTHON_TESTS_DIR}/book/word2vec.inference.model
--infer_model=${CHINESE_NER_INSTALL_DIR}/model
--infer_data=${CHINESE_NER_INSTALL_DIR}/data.txt)
...@@ -196,13 +196,13 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data, ...@@ -196,13 +196,13 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
minute_tensor.lod.assign({one_batch.lod3}); minute_tensor.lod.assign({one_batch.lod3});
// clang-format on // clang-format on
// assign data // assign data
TensorAssignData(&lod_attention_tensor, TensorAssignData<float>(&lod_attention_tensor,
std::vector<std::vector<float>>({{0, 0}})); std::vector<std::vector<float>>({{0, 0}}));
std::vector<float> tmp_zeros(batch_size * 15, 0.); std::vector<float> tmp_zeros(batch_size * 15, 0.);
TensorAssignData(&init_zero_tensor, {tmp_zeros}); TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
TensorAssignData(&lod_tensor_tensor, one_batch.rnn_link_data); TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
TensorAssignData(&week_tensor, one_batch.rnn_week_datas); TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
TensorAssignData(&minute_tensor, one_batch.rnn_minute_datas); TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
// Set inputs. // Set inputs.
auto init_zero_tensor1 = init_zero_tensor; auto init_zero_tensor1 = init_zero_tensor;
init_zero_tensor1.name = "hidden_init"; init_zero_tensor1.name = "hidden_init";
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
namespace paddle {
namespace inference {
struct DataRecord {
std::vector<std::vector<int64_t>> word_data_all, mention_data_all;
std::vector<std::vector<int64_t>> rnn_word_datas, rnn_mention_datas;
std::vector<size_t> lod; // two inputs have the same lod info.
size_t batch_iter{0};
size_t batch_size{1};
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) {
Load(path);
}
DataRecord NextBatch() {
DataRecord data;
size_t batch_end = batch_iter + batch_size;
// NOTE skip the final batch, if no enough data is provided.
if (batch_end <= word_data_all.size()) {
data.word_data_all.assign(word_data_all.begin() + batch_iter,
word_data_all.begin() + batch_end);
data.mention_data_all.assign(mention_data_all.begin() + batch_iter,
mention_data_all.begin() + batch_end);
// Prepare LoDs
data.lod.push_back(0);
CHECK(!data.word_data_all.empty());
CHECK(!data.mention_data_all.empty());
CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size());
for (size_t j = 0; j < data.word_data_all.size(); j++) {
data.rnn_word_datas.push_back(data.word_data_all[j]);
data.rnn_mention_datas.push_back(data.mention_data_all[j]);
// calculate lod
data.lod.push_back(data.lod.back() + data.word_data_all[j].size());
}
}
batch_iter += batch_size;
return data;
}
void Load(const std::string &path) {
std::ifstream file(path);
std::string line;
int num_lines = 0;
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, ';', &data);
// load word data
std::vector<int64_t> word_data;
split_to_int64(data[1], ' ', &word_data);
// load mention data
std::vector<int64_t> mention_data;
split_to_int64(data[3], ' ', &mention_data);
word_data_all.push_back(std::move(word_data));
mention_data_all.push_back(std::move(mention_data));
}
}
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
PaddleTensor lod_word_tensor, lod_mention_tensor;
lod_word_tensor.name = "word";
lod_mention_tensor.name = "mention";
auto one_batch = data->NextBatch();
int size = one_batch.lod[one_batch.lod.size() - 1]; // token batch size
lod_word_tensor.shape.assign({size, 1});
lod_word_tensor.lod.assign({one_batch.lod});
lod_mention_tensor.shape.assign({size, 1});
lod_mention_tensor.lod.assign({one_batch.lod});
// assign data
TensorAssignData<int64_t>(&lod_word_tensor, one_batch.rnn_word_datas);
TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.rnn_mention_datas);
// Set inputs.
input_slots->assign({lod_word_tensor, lod_mention_tensor});
for (auto &tensor : *input_slots) {
tensor.dtype = PaddleDType::INT64;
}
}
// the first inference result
const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
48, 39, 38, 16, 25};
void TestChineseNERPrediction() {
NativeConfig config;
config.prog_file = FLAGS_infer_model + "/__model__";
config.param_file = FLAGS_infer_model + "/param";
config.use_gpu = false;
config.device = 0;
config.specify_input_name = true;
auto predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
std::vector<PaddleTensor> input_slots;
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
// Prepare inputs.
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
std::vector<PaddleTensor> outputs;
Timer timer;
timer.tic();
for (int i = 0; i < FLAGS_repeat; i++) {
predictor->Run(input_slots, &outputs);
}
LOG(INFO) << "===========profile result===========";
LOG(INFO) << "batch_size: " << FLAGS_batch_size
<< ", repeat: " << FLAGS_repeat
<< ", latency: " << timer.toc() / FLAGS_repeat << "ms";
LOG(INFO) << "=====================================";
PADDLE_ENFORCE(outputs.size(), 1UL);
auto &out = outputs[0];
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
[](int a, int b) { return a * b; });
PADDLE_ENFORCE_GT(size, 0);
int64_t *result = static_cast<int64_t *>(out.data.data());
for (size_t i = 0; i < std::min(11UL, size); i++) {
PADDLE_ENFORCE(result[i], chinese_ner_result_data[i]);
}
}
// Directly infer with the original model.
TEST(Analyzer, Chinese_ner) { TestChineseNERPrediction(); }
} // namespace inference
} // namespace paddle
...@@ -62,14 +62,14 @@ void NativePaddlePredictor::PrepareFeedFetch() { ...@@ -62,14 +62,14 @@ void NativePaddlePredictor::PrepareFeedFetch() {
for (auto *op : inference_program_->Block(0).AllOps()) { for (auto *op : inference_program_->Block(0).AllOps()) {
if (op->Type() == "feed") { if (op->Type() == "feed") {
int idx = boost::get<int>(op->GetAttr("col")); int idx = boost::get<int>(op->GetAttr("col"));
if (feeds_.size() <= idx) { if (feeds_.size() <= (size_t)idx) {
feeds_.resize(idx + 1); feeds_.resize(idx + 1);
} }
feeds_[idx] = op; feeds_[idx] = op;
feed_names_[op->Output("Out")[0]] = idx; feed_names_[op->Output("Out")[0]] = idx;
} else if (op->Type() == "fetch") { } else if (op->Type() == "fetch") {
int idx = boost::get<int>(op->GetAttr("col")); int idx = boost::get<int>(op->GetAttr("col"));
if (fetchs_.size() <= idx) { if (fetchs_.size() <= (size_t)idx) {
fetchs_.resize(idx + 1); fetchs_.resize(idx + 1);
} }
fetchs_[idx] = op; fetchs_[idx] = op;
...@@ -222,6 +222,62 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs, ...@@ -222,6 +222,62 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
} }
return true; return true;
} }
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
PaddleTensor *output) {
std::vector<int> shape;
auto dims_i = fetch.dims();
auto lod = fetch.lod();
const T *output_ptr = fetch.data<T>();
auto num = fetch.numel();
std::vector<T> data;
if (0 == lod.size()) {
std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
for (int j = 0; j < dims_i.size(); ++j) {
shape.push_back(dims_i[j]);
}
} else {
// for batch detection
// image[0] -> output[0] shape {145, 6}
// image[1] -> output[1] shape {176, 6}
// then,
// the batch output shape {321, 6}
// the lod {{0, 145, 321}}
// so we should append output[0] to {176, 6}
size_t max_dim = 0;
for (size_t j = 1; j < lod[0].size(); j++) {
max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
}
size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
if (max_dim > 0) {
data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
}
for (size_t j = 1; j < lod[0].size(); j++) {
size_t start = lod[0][j - 1] * common_dim;
size_t end = lod[0][j] * common_dim;
if (end > start) {
std::copy(output_ptr + start, output_ptr + end,
data.begin() + (j - 1) * max_dim * common_dim);
}
}
shape.push_back(lod[0].size() - 1);
shape.push_back(max_dim);
for (int j = 1; j < dims_i.size(); ++j) {
shape.push_back(dims_i[j]);
}
}
output->shape = shape;
auto &buffer = output->data;
if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) {
buffer.Resize(sizeof(T) * data.size());
}
std::memcpy(buffer.data(), data.data(), buffer.length());
// copy LoD
for (const auto &level : fetch.lod()) {
output->lod.emplace_back(level);
}
}
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs, bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
framework::Scope *scope) { framework::Scope *scope) {
...@@ -229,70 +285,20 @@ bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs, ...@@ -229,70 +285,20 @@ bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
outputs->resize(fetchs_.size()); outputs->resize(fetchs_.size());
for (size_t i = 0; i < fetchs_.size(); ++i) { for (size_t i = 0; i < fetchs_.size(); ++i) {
int idx = boost::get<int>(fetchs_[i]->GetAttr("col")); int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
PADDLE_ENFORCE(idx == i); PADDLE_ENFORCE((size_t)idx == i);
framework::LoDTensor &output = framework::LoDTensor &fetch =
framework::GetFetchVariable(*scope, "fetch", idx); framework::GetFetchVariable(*scope, "fetch", idx);
// TODO(panyx0718): Support fetch of other types. auto type = fetch.type();
if (output.type() != typeid(float)) { auto output = &(outputs->at(i));
LOG(ERROR) << "only support fetching float now."; if (type == typeid(float)) {
return false; GetFetchOne<float>(fetch, output);
} output->dtype = PaddleDType::FLOAT32;
} else if (type == typeid(int64_t)) {
std::vector<int> shape; GetFetchOne<int64_t>(fetch, output);
auto dims_i = output.dims(); output->dtype = PaddleDType::INT64;
auto lod = output.lod();
const float *output_ptr = output.data<float>();
// const int64_t* output_ptr = fetchs[i].data<int64_t>();
auto num = output.numel();
std::vector<float> data;
if (0 == lod.size()) {
std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
for (int j = 0; j < dims_i.size(); ++j) {
shape.push_back(dims_i[j]);
}
} else { } else {
// for batch detection LOG(ERROR) << "unknown type, only support float32 and int64 now.";
// image[0] -> output[0] shape {145, 6}
// image[1] -> output[1] shape {176, 6}
// then,
// the batch output shape {321, 6}
// the lod {{0, 145, 321}}
// so we should append output[0] to {176, 6}
size_t max_dim = 0;
for (size_t j = 1; j < lod[0].size(); j++) {
max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
}
size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
if (max_dim > 0) {
data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
}
for (size_t j = 1; j < lod[0].size(); j++) {
size_t start = lod[0][j - 1] * common_dim;
size_t end = lod[0][j] * common_dim;
if (end > start) {
std::copy(output_ptr + start, output_ptr + end,
data.begin() + (j - 1) * max_dim * common_dim);
}
}
shape.push_back(lod[0].size() - 1);
shape.push_back(max_dim);
for (int j = 1; j < dims_i.size(); ++j) {
shape.push_back(dims_i[j]);
}
}
outputs->at(i).shape = shape;
auto &buffer = outputs->at(i).data;
if (buffer.empty() || buffer.length() < sizeof(float) * data.size()) {
buffer.Resize(sizeof(float) * data.size());
}
std::memcpy(buffer.data(), data.data(), buffer.length());
// copy LoD
for (const auto &level : output.lod()) {
outputs->at(i).lod.emplace_back(level);
} }
outputs->at(i).dtype = PaddleDType::FLOAT32;
// TODO(panyx0718): support other types? fill tensor name? avoid a copy.
} }
return true; return true;
} }
......
...@@ -51,7 +51,9 @@ class NativePaddlePredictor : public PaddlePredictor { ...@@ -51,7 +51,9 @@ class NativePaddlePredictor : public PaddlePredictor {
framework::Scope *scope); framework::Scope *scope);
bool GetFetch(std::vector<PaddleTensor> *output_data, bool GetFetch(std::vector<PaddleTensor> *output_data,
framework::Scope *scope); framework::Scope *scope);
template <typename T>
void GetFetchOne(const framework::LoDTensor &fetchs,
PaddleTensor *output_data);
void PrepareFeedFetch(); void PrepareFeedFetch();
NativeConfig config_; NativeConfig config_;
......
...@@ -68,6 +68,13 @@ static void split_to_float(const std::string &str, char sep, ...@@ -68,6 +68,13 @@ static void split_to_float(const std::string &str, char sep,
std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs), std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs),
[](const std::string &v) { return std::stof(v); }); [](const std::string &v) { return std::stof(v); });
} }
static void split_to_int64(const std::string &str, char sep,
std::vector<int64_t> *is) {
std::vector<std::string> pieces;
split(str, sep, &pieces);
std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is),
[](const std::string &v) { return std::stoi(v); });
}
template <typename T> template <typename T>
std::string to_string(const std::vector<T> &vec) { std::string to_string(const std::vector<T> &vec) {
std::stringstream ss; std::stringstream ss;
...@@ -84,14 +91,18 @@ template <> ...@@ -84,14 +91,18 @@ template <>
std::string to_string<std::vector<std::vector<float>>>( std::string to_string<std::vector<std::vector<float>>>(
const std::vector<std::vector<std::vector<float>>> &vec); const std::vector<std::vector<std::vector<float>>> &vec);
// clang-format off template <typename T>
static void TensorAssignData(PaddleTensor *tensor, const std::vector<std::vector<float>> &data) { static void TensorAssignData(PaddleTensor *tensor,
const std::vector<std::vector<T>> &data) {
// Assign buffer // Assign buffer
int dim = std::accumulate(tensor->shape.begin(), tensor->shape.end(), 1, [](int a, int b) { return a * b; }); int dim = std::accumulate(tensor->shape.begin(), tensor->shape.end(), 1,
tensor->data.Resize(sizeof(float) * dim); [](int a, int b) { return a * b; });
tensor->data.Resize(sizeof(T) * dim);
int c = 0; int c = 0;
for (const auto &f : data) { for (const auto &f : data) {
for (float v : f) { static_cast<float *>(tensor->data.data())[c++] = v; } for (T v : f) {
static_cast<T *>(tensor->data.data())[c++] = v;
}
} }
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册