提交 069ff147 编写于 作者: T typhoonzero

polish dist unitest

上级 16b65c55
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main
DTYPE = "float32"
paddle.dataset.mnist.fetch()
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
def cnn_model(data):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=data,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu",
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant()))
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu",
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant()))
SIZE = 10
input_shape = conv_pool_2.shape
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
predict = fluid.layers.fc(
input=conv_pool_2,
size=SIZE,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale, seed=1)))
return predict
class TestDistMnist2x2(TestDistRunnerBase):
def get_model(self, batch_size=2):
# Input data
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
inference_program = fluid.default_main_program().clone()
# Optimization
opt = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, beta1=0.9, beta2=0.999)
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
opt.minimize(avg_cost)
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
if __name__ == "__main__":
runtime_main(TestDistMnist2x2)
...@@ -27,6 +27,7 @@ from multiprocessing import Process ...@@ -27,6 +27,7 @@ from multiprocessing import Process
import os import os
import sys import sys
import signal import signal
from test_dist_base import TestDistRunnerBase, runtime_main
# Fix seed for test # Fix seed for test
fluid.default_startup_program().random_seed = 1 fluid.default_startup_program().random_seed = 1
...@@ -196,161 +197,52 @@ class SE_ResNeXt(): ...@@ -196,161 +197,52 @@ class SE_ResNeXt():
return scale return scale
def get_model(batch_size): class DistSeResneXt2x2(TestDistRunnerBase):
# Input data def get_model(self, batch_size=2):
image = fluid.layers.data(name="data", shape=[3, 224, 224], dtype='float32') # Input data
label = fluid.layers.data(name="int64", shape=[1], dtype='int64') image = fluid.layers.data(
name="data", shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name="int64", shape=[1], dtype='int64')
# Train program # Train program
model = SE_ResNeXt(layers=50) model = SE_ResNeXt(layers=50)
out = model.net(input=image, class_dim=102) out = model.net(input=image, class_dim=102)
cost = fluid.layers.cross_entropy(input=out, label=label) cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
# Evaluator # Evaluator
test_program = fluid.default_main_program().clone(for_test=True) test_program = fluid.default_main_program().clone(for_test=True)
# Optimization # Optimization
total_images = 6149 # flowers total_images = 6149 # flowers
epochs = [30, 60, 90] epochs = [30, 60, 90]
step = int(total_images / batch_size + 1) step = int(total_images / batch_size + 1)
bd = [step * e for e in epochs] bd = [step * e for e in epochs]
base_lr = 0.1 base_lr = 0.1
lr = [] lr = []
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)] lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
optimizer = fluid.optimizer.Momentum( optimizer = fluid.optimizer.Momentum(
# FIXME(typhoonzero): add back LR decay once ParallelExecutor fixed. # FIXME(typhoonzero): add back LR decay once ParallelExecutor fixed.
#learning_rate=fluid.layers.piecewise_decay( #learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr), # boundaries=bd, values=lr),
learning_rate=base_lr, learning_rate=base_lr,
momentum=0.9, momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4)) regularization=fluid.regularizer.L2Decay(1e-4))
optimizer.minimize(avg_cost) optimizer.minimize(avg_cost)
# Reader # Reader
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.dataset.flowers.train(), batch_size=batch_size) paddle.dataset.flowers.train(), batch_size=batch_size)
test_reader = paddle.batch( test_reader = paddle.batch(
paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size) paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)
return test_program, avg_cost, train_reader, test_reader, acc_top1, out return test_program, avg_cost, train_reader, test_reader, acc_top1, out
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id=trainer_id,
program=main_program,
pservers=pserver_endpoints,
trainers=trainers)
return t
class DistSeResneXt2x2:
def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
trainer_id):
get_model(batch_size=2)
t = get_transpiler(trainer_id,
fluid.default_main_program(), pserver_endpoints,
trainers)
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
exe.run(pserver_prog)
def _wait_ps_ready(self, pid):
retry_times = 20
while True:
assert retry_times >= 0, "wait ps ready failed"
time.sleep(3)
print("waiting ps ready: ", pid)
try:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os.stat("/tmp/paddle.%d.port" % pid)
return
except os.error:
retry_times -= 1
def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
batch_size=2)
if is_dist:
t = get_transpiler(trainer_id,
fluid.default_main_program(), endpoints,
trainers)
trainer_prog = t.get_trainer_program()
else:
trainer_prog = fluid.default_main_program()
startup_exe = fluid.Executor(place)
startup_exe.run(fluid.default_startup_program())
strategy = fluid.ExecutionStrategy()
strategy.num_threads = 1
strategy.allow_op_delay = False
exe = fluid.ParallelExecutor(
True, loss_name=avg_cost.name, exec_strategy=strategy)
feed_var_list = [
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
reader_generator = test_reader()
data = next(reader_generator)
first_loss, = exe.run(fetch_list=[avg_cost.name],
feed=feeder.feed(data))
print(first_loss)
for i in six.moves.xrange(5):
data = next(reader_generator)
loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
data = next(reader_generator)
last_loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
print(last_loss)
def main(role="pserver",
endpoints="127.0.0.1:9123",
trainer_id=0,
current_endpoint="127.0.0.1:9123",
trainers=1,
is_dist=True):
model = DistSeResneXt2x2()
if role == "pserver":
model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
else:
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)
if __name__ == "__main__": if __name__ == "__main__":
if len(sys.argv) != 7: runtime_main(DistSeResneXt2x2)
print(
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
)
role = sys.argv[1]
endpoints = sys.argv[2]
trainer_id = int(sys.argv[3])
current_endpoint = sys.argv[4]
trainers = int(sys.argv[5])
is_dist = True if sys.argv[6] == "TRUE" else False
main(
role=role,
endpoints=endpoints,
trainer_id=trainer_id,
current_endpoint=current_endpoint,
trainers=trainers,
is_dist=is_dist)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from test_dist_base import TestDistRunnerBase, runtime_main
IS_SPARSE = True
EMBED_SIZE = 32
HIDDEN_SIZE = 256
N = 5
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
class TestDistWord2vec2x2(TestDistRunnerBase):
def get_model(self, batch_size=2):
BATCH_SIZE = batch_size
def __network__(words):
embed_first = fluid.layers.embedding(
input=words[0],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(
name='shared_w', initializer=fluid.initializer.Constant()))
embed_second = fluid.layers.embedding(
input=words[1],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(
name='shared_w', initializer=fluid.initializer.Constant()))
embed_third = fluid.layers.embedding(
input=words[2],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(
name='shared_w', initializer=fluid.initializer.Constant()))
embed_forth = fluid.layers.embedding(
input=words[3],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(
name='shared_w', initializer=fluid.initializer.Constant()))
concat_embed = fluid.layers.concat(
input=[embed_first, embed_second, embed_third, embed_forth],
axis=1)
hidden1 = fluid.layers.fc(
input=concat_embed,
size=HIDDEN_SIZE,
act='sigmoid',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant()))
predict_word = fluid.layers.fc(
input=hidden1,
size=dict_size,
act='softmax',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant()))
cost = fluid.layers.cross_entropy(
input=predict_word, label=words[4])
avg_cost = fluid.layers.mean(cost)
return avg_cost, predict_word
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
second_word = fluid.layers.data(
name='secondw', shape=[1], dtype='int64')
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
avg_cost, predict_word = __network__(
[first_word, second_word, third_word, forth_word, next_word])
inference_program = paddle.fluid.default_main_program().clone()
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
test_reader = paddle.batch(
paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE)
return inference_program, avg_cost, train_reader, test_reader, None, predict_word
if __name__ == "__main__":
runtime_main(TestDistWord2vec2x2)
...@@ -18,6 +18,109 @@ import os ...@@ -18,6 +18,109 @@ import os
import sys import sys
import signal import signal
import subprocess import subprocess
import six
class TestDistRunnerBase(object):
def get_model(self, batch_size=2):
raise NotImplementedError(
"get_model should be implemented by child classes.")
def get_transpiler(self, trainer_id, main_program, pserver_endpoints,
trainers):
# NOTE: import fluid until runtime, or else forking processes will cause error.
import paddle
import paddle.fluid as fluid
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id=trainer_id,
program=main_program,
pservers=pserver_endpoints,
trainers=trainers)
return t
def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
trainer_id):
import paddle
import paddle.fluid as fluid
self.get_model(batch_size=2)
t = self.get_transpiler(trainer_id,
fluid.default_main_program(), pserver_endpoints,
trainers)
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
exe.run(pserver_prog)
def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
import paddle
import paddle.fluid as fluid
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
self.get_model(batch_size=2)
if is_dist:
t = self.get_transpiler(trainer_id,
fluid.default_main_program(), endpoints,
trainers)
trainer_prog = t.get_trainer_program()
else:
trainer_prog = fluid.default_main_program()
startup_exe = fluid.Executor(place)
startup_exe.run(fluid.default_startup_program())
strategy = fluid.ExecutionStrategy()
strategy.num_threads = 1
strategy.allow_op_delay = False
exe = fluid.ParallelExecutor(
True, loss_name=avg_cost.name, exec_strategy=strategy)
feed_var_list = [
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
reader_generator = test_reader()
data = next(reader_generator)
first_loss, = exe.run(fetch_list=[avg_cost.name],
feed=feeder.feed(data))
print(first_loss)
for i in six.moves.xrange(5):
data = next(reader_generator)
loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
data = next(reader_generator)
last_loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
print(last_loss)
def runtime_main(test_class):
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
if len(sys.argv) != 7:
print(
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
)
role = sys.argv[1]
endpoints = sys.argv[2]
trainer_id = int(sys.argv[3])
current_endpoint = sys.argv[4]
trainers = int(sys.argv[5])
is_dist = True if sys.argv[6] == "TRUE" else False
model = test_class()
if role == "pserver":
model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
else:
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)
class TestDistBase(unittest.TestCase): class TestDistBase(unittest.TestCase):
...@@ -127,12 +230,10 @@ class TestDistBase(unittest.TestCase): ...@@ -127,12 +230,10 @@ class TestDistBase(unittest.TestCase):
local_first_loss = eval(local_lines[0])[0] local_first_loss = eval(local_lines[0])[0]
local_last_loss = eval(local_lines[1])[0] local_last_loss = eval(local_lines[1])[0]
self.assertAlmostEqual(local_first_loss, dist_first_loss, delta=delta) # FIXME: use terminate() instead of sigkill.
self.assertAlmostEqual(local_last_loss, dist_last_loss, delta=delta)
# check tr0_out
# FIXME: ensure the server process is killed
# replace with ps0.terminate()
os.kill(ps0.pid, signal.SIGKILL) os.kill(ps0.pid, signal.SIGKILL)
os.kill(ps1.pid, signal.SIGKILL) os.kill(ps1.pid, signal.SIGKILL)
FNULL.close() FNULL.close()
self.assertAlmostEqual(local_first_loss, dist_first_loss, delta=delta)
self.assertAlmostEqual(local_last_loss, dist_last_loss, delta=delta)
...@@ -11,200 +11,13 @@ ...@@ -11,200 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest import unittest
from multiprocessing import Process from test_dist_base import TestDistBase
import os
import signal
from functools import reduce
SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()
# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=data,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE = 10
input_shape = conv_pool_2.shape
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
predict = fluid.layers.fc(
input=conv_pool_2,
size=SIZE,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)))
return predict
def get_model(batch_size):
# Input data
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
inference_program = fluid.default_main_program().clone()
# Optimization
opt = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, beta1=0.9, beta2=0.999)
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
opt.minimize(avg_cost)
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id=trainer_id,
program=main_program,
pservers=pserver_endpoints,
trainers=trainers)
return t
def run_pserver(pserver_endpoints, trainers, current_endpoint):
get_model(batch_size=20)
t = get_transpiler(0,
fluid.default_main_program(), pserver_endpoints,
trainers)
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
exe.run(pserver_prog)
class TestDistMnist(unittest.TestCase):
def setUp(self):
self._trainers = 1
self._pservers = 1
self._ps_endpoints = "127.0.0.1:9123"
def start_pserver(self, endpoint):
p = Process(
target=run_pserver,
args=(self._ps_endpoints, self._trainers, endpoint))
p.start()
return p.pid
def _wait_ps_ready(self, pid):
retry_times = 5
while True:
assert retry_times >= 0, "wait ps ready failed"
time.sleep(1)
try:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os.stat("/tmp/paddle.%d.port" % pid)
return
except os.error:
retry_times -= 1
def stop_pserver(self, pid):
os.kill(pid, signal.SIGTERM)
def test_with_place(self):
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
pserver_pid = self.start_pserver(self._ps_endpoints)
self._wait_ps_ready(pserver_pid)
self.run_trainer(p, 0)
self.stop_pserver(pserver_pid)
def run_trainer(self, place, trainer_id):
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
batch_size=20)
t = get_transpiler(trainer_id,
fluid.default_main_program(), self._ps_endpoints,
self._trainers)
trainer_prog = t.get_trainer_program()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feed_var_list = [
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in range(10):
for batch_id, data in enumerate(train_reader()):
exe.run(trainer_prog, feed=feeder.feed(data))
if (batch_id + 1) % 10 == 0: class TestDistSeResneXt2x2(TestDistBase):
acc_set = [] def test_se_resnext(self):
avg_loss_set = [] self.check_with_place("dist_mnist.py", delta=1e-7)
for test_data in test_reader():
acc_np, avg_loss_np = exe.run(
program=test_program,
feed=feeder.feed(test_data),
fetch_list=[batch_acc, avg_cost])
acc_set.append(float(acc_np))
avg_loss_set.append(float(avg_loss_np))
# get test acc and loss
acc_val = np.array(acc_set).mean()
avg_loss_val = np.array(avg_loss_set).mean()
if float(acc_val
) > 0.8: # Smaller value to increase CI speed
return
else:
print(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
format(pass_id, batch_id + 1,
float(avg_loss_val), float(acc_val)))
if math.isnan(float(avg_loss_val)):
assert ("got Nan loss, training failed.")
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -17,7 +17,7 @@ from test_dist_base import TestDistBase ...@@ -17,7 +17,7 @@ from test_dist_base import TestDistBase
class TestDistSeResneXt2x2(TestDistBase): class TestDistSeResneXt2x2(TestDistBase):
def test_se_resnext(self): def test_se_resnext(self):
self.check_with_place("dist_se_resnext.py") self.check_with_place("dist_se_resnext.py", delta=1e-7)
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -11,192 +11,13 @@ ...@@ -11,192 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest import unittest
from multiprocessing import Process from test_dist_base import TestDistBase
import os
import signal
IS_SPARSE = True
EMBED_SIZE = 32
HIDDEN_SIZE = 256
N = 5
BATCH_SIZE = 32
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
def get_model():
def __network__(words):
embed_first = fluid.layers.embedding(
input=words[0],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr='shared_w')
embed_second = fluid.layers.embedding(
input=words[1],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr='shared_w')
embed_third = fluid.layers.embedding(
input=words[2],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr='shared_w')
embed_forth = fluid.layers.embedding(
input=words[3],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr='shared_w')
concat_embed = fluid.layers.concat(
input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
hidden1 = fluid.layers.fc(input=concat_embed,
size=HIDDEN_SIZE,
act='sigmoid')
predict_word = fluid.layers.fc(input=hidden1,
size=dict_size,
act='softmax')
cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
avg_cost = fluid.layers.mean(cost)
return avg_cost, predict_word
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
avg_cost, predict_word = __network__(
[first_word, second_word, third_word, forth_word, next_word])
inference_program = paddle.fluid.default_main_program().clone()
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
test_reader = paddle.batch(
paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE)
return inference_program, avg_cost, train_reader, test_reader, predict_word
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id=trainer_id,
program=main_program,
pservers=pserver_endpoints,
trainers=trainers)
return t
def run_pserver(pserver_endpoints, trainers, current_endpoint):
get_model()
t = get_transpiler(0,
fluid.default_main_program(), pserver_endpoints,
trainers)
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
exe.run(pserver_prog)
class TestDistMnist(unittest.TestCase):
def setUp(self):
self._trainers = 1
self._pservers = 1
self._ps_endpoints = "127.0.0.1:9123"
def start_pserver(self, endpoint):
p = Process(
target=run_pserver,
args=(self._ps_endpoints, self._trainers, endpoint))
p.start()
return p.pid
def _wait_ps_ready(self, pid):
retry_times = 5
while True:
assert retry_times >= 0, "wait ps ready failed"
time.sleep(1)
try:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os.stat("/tmp/paddle.%d.port" % pid)
return
except os.error:
retry_times -= 1
def stop_pserver(self, pid):
os.kill(pid, signal.SIGKILL)
def test_with_place(self):
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
pserver_pid = self.start_pserver(self._ps_endpoints)
self._wait_ps_ready(pserver_pid)
self.run_trainer(p, 0)
self.stop_pserver(pserver_pid)
def run_trainer(self, place, trainer_id):
test_program, avg_cost, train_reader, test_reader, predict = get_model()
t = get_transpiler(trainer_id,
fluid.default_main_program(), self._ps_endpoints,
self._trainers)
trainer_prog = t.get_trainer_program()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
use_gpu = True if core.is_compiled_with_cuda() else False
exec_strategy = ExecutionStrategy()
exec_strategy.use_cuda = use_gpu
train_exe = fluid.ParallelExecutor(
use_cuda=use_gpu,
main_program=trainer_prog,
loss_name=avg_cost.name,
exec_strategy=exec_strategy)
feed_var_list = [
var for var in trainer_prog.global_block().vars.values()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place) class TestDistSeResneXt2x2(TestDistBase):
for pass_id in range(10): def test_se_resnext(self):
for batch_id, data in enumerate(train_reader()): self.check_with_place("dist_word2vec.py", delta=1e-7)
avg_loss_np = train_exe.run(feed=feeder.feed(data),
fetch_list=[avg_cost.name])
loss = np.array(avg_loss_np).mean()
if float(loss) < 5.0:
return
if math.isnan(loss):
assert ("Got Nan loss, training failed")
if __name__ == "__main__": if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册