Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
054fc997
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
054fc997
编写于
3月 29, 2022
作者:
T
tianshuo78520a
提交者:
GitHub
3月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "[Phi] trans logsumexp op (#40790)" (#41068)
This reverts commit
9c0eaada
.
上级
3a6f1135
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
270 addition
and
440 deletion
+270
-440
paddle/fluid/operators/reduce_ops/logsumexp_op.cc
paddle/fluid/operators/reduce_ops/logsumexp_op.cc
+85
-8
paddle/fluid/operators/reduce_ops/logsumexp_op.cu
paddle/fluid/operators/reduce_ops/logsumexp_op.cu
+6
-8
paddle/fluid/operators/reduce_ops/logsumexp_op.h
paddle/fluid/operators/reduce_ops/logsumexp_op.h
+170
-0
paddle/fluid/operators/reduce_ops/logsumexp_op.part.cu
paddle/fluid/operators/reduce_ops/logsumexp_op.part.cu
+8
-7
paddle/fluid/operators/reduce_ops/logsumexp_op_xpu.cc
paddle/fluid/operators/reduce_ops/logsumexp_op_xpu.cc
+1
-1
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+0
-85
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+0
-6
paddle/phi/kernels/gpu/logsumexp_grad_kernel.cu
paddle/phi/kernels/gpu/logsumexp_grad_kernel.cu
+0
-22
paddle/phi/kernels/gpu/logsumexp_kernel.cu
paddle/phi/kernels/gpu/logsumexp_kernel.cu
+0
-23
paddle/phi/kernels/impl/logsumexp_grad_kernel_impl.h
paddle/phi/kernels/impl/logsumexp_grad_kernel_impl.h
+0
-91
paddle/phi/kernels/impl/logsumexp_kernel_impl.h
paddle/phi/kernels/impl/logsumexp_kernel_impl.h
+0
-100
paddle/phi/kernels/logsumexp_grad_kernel.h
paddle/phi/kernels/logsumexp_grad_kernel.h
+0
-31
paddle/phi/kernels/logsumexp_kernel.h
paddle/phi/kernels/logsumexp_kernel.h
+0
-29
paddle/phi/ops/compat/logsumexp_sig.cc
paddle/phi/ops/compat/logsumexp_sig.cc
+0
-29
未找到文件。
paddle/fluid/operators/reduce_ops/logsumexp_op.cc
浏览文件 @
054fc997
...
@@ -12,13 +12,10 @@
...
@@ -12,13 +12,10 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/logsumexp_op.h"
#include <algorithm>
#include <algorithm>
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -26,6 +23,80 @@ namespace operators {
...
@@ -26,6 +23,80 @@ namespace operators {
class
LogsumexpOp
:
public
framework
::
OperatorWithKernel
{
class
LogsumexpOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"logsumexp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"logsumexp"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_LE
(
x_rank
,
4
,
platform
::
errors
::
InvalidArgument
(
"The input tensor X's dimensions of logsumexp "
"should be less or equal than 4. But received X's "
"dimensions = %d, X's shape = [%s]."
,
x_rank
,
x_dims
));
auto
axis
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axis"
);
PADDLE_ENFORCE_GT
(
axis
.
size
(),
0
,
platform
::
errors
::
InvalidArgument
(
"The size of axis of logsumexp "
"should be greater than 0. But received the size of axis "
"of logsumexp is %d."
,
axis
.
size
()));
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
PADDLE_ENFORCE_LT
(
axis
[
i
],
x_rank
,
platform
::
errors
::
InvalidArgument
(
"axis[%d] should be in the "
"range [-D, D), where D is the dimensions of X and "
"D is %d. But received axis[%d] = %d."
,
i
,
x_rank
,
i
,
axis
[
i
]));
PADDLE_ENFORCE_GE
(
axis
[
i
],
-
x_rank
,
platform
::
errors
::
InvalidArgument
(
"axis[%d] should be in the "
"range [-D, D), where D is the dimensions of X and "
"D is %d. But received axis[%d] = %d."
,
i
,
x_rank
,
i
,
axis
[
i
]));
if
(
axis
[
i
]
<
0
)
{
axis
[
i
]
+=
x_rank
;
}
}
bool
keepdim
=
ctx
->
Attrs
().
Get
<
bool
>
(
"keepdim"
);
bool
reduce_all
=
ctx
->
Attrs
().
Get
<
bool
>
(
"reduce_all"
);
auto
dims_vector
=
vectorize
(
x_dims
);
if
(
reduce_all
)
{
if
(
keepdim
)
ctx
->
SetOutputDim
(
"Out"
,
phi
::
make_ddim
(
std
::
vector
<
int64_t
>
(
x_rank
,
1
)));
else
ctx
->
SetOutputDim
(
"Out"
,
{
1
});
}
else
{
auto
dims_vector
=
vectorize
(
x_dims
);
if
(
keepdim
)
{
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
++
i
)
{
dims_vector
[
axis
[
i
]]
=
1
;
}
}
else
{
const
int
kDelFlag
=
-
1
;
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
++
i
)
{
dims_vector
[
axis
[
i
]]
=
kDelFlag
;
}
dims_vector
.
erase
(
std
::
remove
(
dims_vector
.
begin
(),
dims_vector
.
end
(),
kDelFlag
),
dims_vector
.
end
());
}
if
(
!
keepdim
&&
dims_vector
.
size
()
==
0
)
{
dims_vector
.
push_back
(
1
);
}
auto
out_dims
=
phi
::
make_ddim
(
dims_vector
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
axis
.
size
()
>
0
&&
axis
[
0
]
!=
0
)
{
// Only pass LoD when not reducing on the first dim.
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
}
};
};
class
LogsumexpOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
LogsumexpOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
@@ -93,10 +164,16 @@ class LogsumexpGradOpMaker : public framework::SingleGradOpMaker<T> {
...
@@ -93,10 +164,16 @@ class LogsumexpGradOpMaker : public framework::SingleGradOpMaker<T> {
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
DECLARE_INFER_SHAPE_FUNCTOR
(
logsumexp
,
LogsumexpInferShapeFunctor
,
PD_INFER_META
(
phi
::
LogsumexpInferMeta
));
REGISTER_OPERATOR
(
logsumexp
,
ops
::
LogsumexpOp
,
ops
::
LogsumexpOpMaker
,
REGISTER_OPERATOR
(
logsumexp
,
ops
::
LogsumexpOp
,
ops
::
LogsumexpOpMaker
,
ops
::
LogsumexpGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
LogsumexpGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
LogsumexpGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
ops
::
LogsumexpGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
LogsumexpInferShapeFunctor
);
REGISTER_OPERATOR
(
logsumexp_grad
,
ops
::
LogsumexpGrapOp
);
REGISTER_OPERATOR
(
logsumexp_grad
,
ops
::
LogsumexpGrapOp
);
REGISTER_OP_CPU_KERNEL
(
logsumexp
,
ops
::
LogsumexpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
LogsumexpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
logsumexp_grad
,
ops
::
LogsumexpGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
LogsumexpGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/
phi/kernels/cpu/logsumexp_kernel.cc
→
paddle/
fluid/operators/reduce_ops/logsumexp_op.cu
浏览文件 @
054fc997
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
//
//
// Licensed under the Apache License, Version 2.0 (the "License");
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// you may not use this file except in compliance with the License.
...
@@ -12,12 +12,10 @@
...
@@ -12,12 +12,10 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/
phi/kernels/logsumexp_kernel
.h"
#include "paddle/
fluid/operators/reduce_ops/logsumexp_op
.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
namespace
ops
=
paddle
::
operators
;
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/logsumexp_kernel_impl.h"
REGISTER_OP_CUDA_KERNEL
(
logsumexp
,
ops
::
LogsumexpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
PD_REGISTER_KERNEL
(
ops
::
LogsumexpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
logsumexp
,
CPU
,
ALL_LAYOUT
,
phi
::
LogsumexpKernel
,
float
,
double
)
{}
paddle/fluid/operators/reduce_ops/logsumexp_op.h
0 → 100644
浏览文件 @
054fc997
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
namespace
paddle
{
namespace
operators
{
#define HANDLE_DIM(NDIM, RDIM) \
if (ndim == NDIM && rdim == RDIM) { \
paddle::operators::ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, \
LogsumexpFunctor>( \
context.template device_context<DeviceContext>(), *input, output, \
axis, keepdim); \
}
struct
LogsumexpFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
const
Dim
&
dim
)
{
auto
x_dim
=
x
->
dimensions
();
auto
t_dim
=
x_dim
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
dim
.
size
());
i
++
)
{
t_dim
[
dim
[
i
]]
=
1
;
}
auto
r_dim
=
x_dim
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
r_dim
.
size
());
i
++
)
{
r_dim
[
i
]
=
1
;
}
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
dim
.
size
());
i
++
)
{
r_dim
[
dim
[
i
]]
=
x_dim
[
dim
[
i
]];
}
auto
y_dim
=
y
->
dimensions
();
auto
x_max
=
x
->
maximum
(
dim
);
y
->
device
(
place
)
=
(
x_max
+
(
*
x
-
x_max
.
reshape
(
t_dim
).
broadcast
(
r_dim
)).
exp
().
sum
(
dim
).
log
())
.
reshape
(
y_dim
);
}
};
struct
LogsumexpGradFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
(
*
x
-
y
->
broadcast
(
dim
)).
exp
();
}
};
template
<
typename
DeviceContext
,
typename
OutT
>
class
LogsumexpKernel
:
public
framework
::
OpKernel
<
OutT
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
OutT
>
(
context
.
GetPlace
());
auto
axis
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
auto
keepdim
=
context
.
Attr
<
bool
>
(
"keepdim"
);
auto
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
const
auto
&
input_dim_size
=
input
->
dims
().
size
();
// The dims has full dim, set the reduce_all is True
reduce_all
|=
(
static_cast
<
const
int
>
(
axis
.
size
())
==
input_dim_size
);
if
(
reduce_all
)
{
// Flatten and reduce 1-D tensor
auto
x
=
EigenVector
<
OutT
>::
Flatten
(
*
input
);
auto
out
=
EigenScalar
<
OutT
>::
From
(
*
output
);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
reduce_dim
=
Eigen
::
array
<
int
,
1
>
({{
0
}});
LogsumexpFunctor
()(
place
,
&
x
,
&
out
,
reduce_dim
);
}
else
{
int
ndim
=
input_dim_size
;
int
rdim
=
axis
.
size
();
// comments for accelerating compiling temporarily.
// HANDLE_DIM(6, 5);
// HANDLE_DIM(6, 4);
// HANDLE_DIM(6, 3);
// HANDLE_DIM(6, 2);
// HANDLE_DIM(6, 1);
// HANDLE_DIM(5, 4);
// HANDLE_DIM(5, 3);
// HANDLE_DIM(5, 2);
// HANDLE_DIM(5, 1);
HANDLE_DIM
(
4
,
3
);
HANDLE_DIM
(
4
,
2
);
HANDLE_DIM
(
4
,
1
);
HANDLE_DIM
(
3
,
2
);
HANDLE_DIM
(
3
,
1
);
HANDLE_DIM
(
2
,
1
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
LogsumexpGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
axis
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
auto
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
const
auto
input_dim_size
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
reduce_all
|=
(
static_cast
<
const
int
>
(
axis
.
size
())
==
input_dim_size
);
if
(
reduce_all
)
{
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
y
=
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
dy
=
EigenVector
<
T
>::
Flatten
(
*
output_grad
);
auto
dx
=
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
broadcast_dim
=
Eigen
::
array
<
int
,
1
>
({{
static_cast
<
int
>
(
input
->
numel
())}});
LogsumexpGradFunctor
()(
place
,
&
x
,
&
y
,
&
dx
,
&
dy
,
broadcast_dim
,
broadcast_dim
[
0
]);
}
else
{
int
rank
=
input
->
dims
().
size
();
LogsumexpGradFunctor
functor
;
switch
(
rank
)
{
case
1
:
ReduceGradFunctor
<
DeviceContext
,
T
,
1
,
LogsumexpGradFunctor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
*
output_grad
,
input_grad
,
functor
,
axis
);
break
;
case
2
:
ReduceGradFunctor
<
DeviceContext
,
T
,
2
,
LogsumexpGradFunctor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
*
output_grad
,
input_grad
,
functor
,
axis
);
break
;
case
3
:
ReduceGradFunctor
<
DeviceContext
,
T
,
3
,
LogsumexpGradFunctor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
*
output_grad
,
input_grad
,
functor
,
axis
);
break
;
case
4
:
ReduceGradFunctor
<
DeviceContext
,
T
,
4
,
LogsumexpGradFunctor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
*
output_grad
,
input_grad
,
functor
,
axis
);
break
;
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/
phi/kernels/cpu/logsumexp_grad_kernel.cc
→
paddle/
fluid/operators/reduce_ops/logsumexp_op.part.cu
浏览文件 @
054fc997
// Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
//
//
// Licensed under the Apache License, Version 2.0 (the "License");
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// you may not use this file except in compliance with the License.
...
@@ -12,11 +12,12 @@
...
@@ -12,11 +12,12 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/phi/kernels/logsumexp_grad_kernel.h"
// .part used to speed up nvcc compile
#include "paddle/fluid/operators/reduce_ops/logsumexp_op.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
namespace
ops
=
paddle
::
operators
;
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/logsumexp_grad_kernel_impl.h"
PD_REGISTER_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
logsumexp_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
LogsumexpGradKernel
,
float
,
double
)
{}
logsumexp_grad
,
ops
::
LogsumexpGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LogsumexpGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/reduce_ops/logsumexp_op_xpu.cc
浏览文件 @
054fc997
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
#ifdef PADDLE_WITH_XPU
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/reduce_ops/
reduce_op_function
.h"
#include "paddle/fluid/operators/reduce_ops/
logsumexp_op
.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/device_context.h"
...
...
paddle/phi/infermeta/unary.cc
浏览文件 @
054fc997
...
@@ -804,91 +804,6 @@ void KthvalueInferMeta(const MetaTensor& x,
...
@@ -804,91 +804,6 @@ void KthvalueInferMeta(const MetaTensor& x,
indices
->
set_dtype
(
x
.
dtype
());
indices
->
set_dtype
(
x
.
dtype
());
}
}
void
LogsumexpInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keepdim
,
bool
reduce_all
,
MetaTensor
*
out
)
{
auto
x_dims
=
input
.
dims
();
auto
x_rank
=
x_dims
.
size
();
std
::
vector
<
int64_t
>
formated_axis
=
axis
;
PADDLE_ENFORCE_LE
(
x_rank
,
4
,
errors
::
InvalidArgument
(
"The input tensor X's dimensions of logsumexp "
"should be less or equal than 4. But received X's "
"dimensions = %d, X's shape = [%s]."
,
x_rank
,
x_dims
));
PADDLE_ENFORCE_GT
(
axis
.
size
(),
0
,
errors
::
InvalidArgument
(
"The size of axis of logsumexp "
"should be greater than 0. But received the size of axis "
"of logsumexp is %d."
,
axis
.
size
()));
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
PADDLE_ENFORCE_LT
(
axis
[
i
],
x_rank
,
errors
::
InvalidArgument
(
"axis[%d] should be in the "
"range [-D, D), where D is the dimensions of X and "
"D is %d. But received axis[%d] = %d."
,
i
,
x_rank
,
i
,
axis
[
i
]));
PADDLE_ENFORCE_GE
(
axis
[
i
],
-
x_rank
,
errors
::
InvalidArgument
(
"axis[%d] should be in the "
"range [-D, D), where D is the dimensions of X and "
"D is %d. But received axis[%d] = %d."
,
i
,
x_rank
,
i
,
axis
[
i
]));
if
(
axis
[
i
]
<
0
)
{
formated_axis
[
i
]
+=
x_rank
;
}
}
auto
dims_vector
=
vectorize
(
x_dims
);
if
(
reduce_all
)
{
if
(
keepdim
)
out
->
set_dims
(
phi
::
make_ddim
(
std
::
vector
<
int64_t
>
(
x_rank
,
1
)));
else
out
->
set_dims
({
1
});
}
else
{
auto
dims_vector
=
vectorize
(
x_dims
);
if
(
keepdim
)
{
for
(
size_t
i
=
0
;
i
<
formated_axis
.
size
();
++
i
)
{
dims_vector
[
formated_axis
[
i
]]
=
1
;
}
}
else
{
const
int
kDelFlag
=
-
1
;
for
(
size_t
i
=
0
;
i
<
formated_axis
.
size
();
++
i
)
{
dims_vector
[
formated_axis
[
i
]]
=
kDelFlag
;
}
dims_vector
.
erase
(
std
::
remove
(
dims_vector
.
begin
(),
dims_vector
.
end
(),
kDelFlag
),
dims_vector
.
end
());
}
if
(
!
keepdim
&&
dims_vector
.
size
()
==
0
)
{
dims_vector
.
push_back
(
1
);
}
auto
out_dims
=
phi
::
make_ddim
(
dims_vector
);
out
->
set_dims
(
out_dims
);
if
(
formated_axis
.
size
()
>
0
&&
formated_axis
[
0
]
!=
0
)
{
// Only pass LoD when not reducing on the first dim.
out
->
share_lod
(
input
);
}
}
out
->
set_dtype
(
input
.
dtype
());
}
void
MatrixPowerInferMeta
(
const
MetaTensor
&
x
,
int
n
,
MetaTensor
*
out
)
{
void
MatrixPowerInferMeta
(
const
MetaTensor
&
x
,
int
n
,
MetaTensor
*
out
)
{
auto
dims
=
x
.
dims
();
auto
dims
=
x
.
dims
();
auto
n_dim
=
dims
.
size
();
auto
n_dim
=
dims
.
size
();
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
054fc997
...
@@ -136,12 +136,6 @@ void KthvalueInferMeta(const MetaTensor& x,
...
@@ -136,12 +136,6 @@ void KthvalueInferMeta(const MetaTensor& x,
MetaTensor
*
indices
,
MetaTensor
*
indices
,
MetaConfig
=
MetaConfig
());
MetaConfig
=
MetaConfig
());
void
LogsumexpInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keepdim
,
bool
reduce_all
,
MetaTensor
*
out
);
void
MatrixPowerInferMeta
(
const
MetaTensor
&
x
,
int
n
,
MetaTensor
*
out
);
void
MatrixPowerInferMeta
(
const
MetaTensor
&
x
,
int
n
,
MetaTensor
*
out
);
void
MaxOutInferMeta
(
const
MetaTensor
&
x
,
void
MaxOutInferMeta
(
const
MetaTensor
&
x
,
...
...
paddle/phi/kernels/gpu/logsumexp_grad_kernel.cu
已删除
100644 → 0
浏览文件 @
3a6f1135
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/logsumexp_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/logsumexp_grad_kernel_impl.h"
PD_REGISTER_KERNEL
(
logsumexp_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
LogsumexpGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/logsumexp_kernel.cu
已删除
100644 → 0
浏览文件 @
3a6f1135
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/logsumexp_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/logsumexp_kernel_impl.h"
PD_REGISTER_KERNEL
(
logsumexp
,
GPU
,
ALL_LAYOUT
,
phi
::
LogsumexpKernel
,
float
,
double
)
{}
paddle/phi/kernels/impl/logsumexp_grad_kernel_impl.h
已删除
100644 → 0
浏览文件 @
3a6f1135
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <type_traits>
#include <vector>
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/reduce_grad_functions.h"
#include "paddle/phi/kernels/logsumexp_grad_kernel.h"
namespace
phi
{
struct
LogsumexpGradFunctor
{
template
<
typename
Context
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
Context
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
(
*
x
-
y
->
broadcast
(
dim
)).
exp
();
}
};
template
<
typename
T
,
typename
Context
>
void
LogsumexpGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
in
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int
>&
axis
,
bool
keepdim
,
bool
reduce_all
,
DenseTensor
*
in_grad
)
{
dev_ctx
.
template
Alloc
<
T
>(
in_grad
);
const
auto
input_dim_size
=
in
.
dims
().
size
();
reduce_all
|=
(
static_cast
<
const
int
>
(
axis
.
size
())
==
input_dim_size
);
if
(
reduce_all
)
{
auto
x
=
phi
::
EigenVector
<
T
>::
Flatten
(
in
);
auto
y
=
phi
::
EigenVector
<
T
>::
Flatten
(
out
);
auto
dy
=
phi
::
EigenVector
<
T
>::
Flatten
(
out_grad
);
auto
dx
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
in_grad
);
auto
&
place
=
*
dev_ctx
.
eigen_device
();
auto
broadcast_dim
=
Eigen
::
array
<
int
,
1
>
({{
static_cast
<
int
>
(
in
.
numel
())}});
LogsumexpGradFunctor
()(
place
,
&
x
,
&
y
,
&
dx
,
&
dy
,
broadcast_dim
,
broadcast_dim
[
0
]);
}
else
{
int
rank
=
in
.
dims
().
size
();
LogsumexpGradFunctor
functor
;
switch
(
rank
)
{
case
1
:
phi
::
funcs
::
ReduceGradFunctor
<
Context
,
T
,
1
,
LogsumexpGradFunctor
>
(
dev_ctx
,
in
,
out
,
out_grad
,
in_grad
,
functor
,
axis
);
break
;
case
2
:
phi
::
funcs
::
ReduceGradFunctor
<
Context
,
T
,
2
,
LogsumexpGradFunctor
>
(
dev_ctx
,
in
,
out
,
out_grad
,
in_grad
,
functor
,
axis
);
break
;
case
3
:
phi
::
funcs
::
ReduceGradFunctor
<
Context
,
T
,
3
,
LogsumexpGradFunctor
>
(
dev_ctx
,
in
,
out
,
out_grad
,
in_grad
,
functor
,
axis
);
break
;
case
4
:
phi
::
funcs
::
ReduceGradFunctor
<
Context
,
T
,
4
,
LogsumexpGradFunctor
>
(
dev_ctx
,
in
,
out
,
out_grad
,
in_grad
,
functor
,
axis
);
break
;
}
}
}
}
// namespace phi
paddle/phi/kernels/impl/logsumexp_kernel_impl.h
已删除
100644 → 0
浏览文件 @
3a6f1135
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <type_traits>
#include <vector>
#include "paddle/phi/kernels/cpu/reduce.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/logsumexp_kernel.h"
namespace
phi
{
#define HANDLE_DIM(NDIM, RDIM) \
if (ndim == NDIM && rdim == RDIM) { \
ReduceFunctor<Context, T, NDIM, RDIM, LogsumexpFunctor>( \
dev_ctx, x, out, axis, keepdim); \
}
struct
LogsumexpFunctor
{
template
<
typename
Context
,
typename
X
,
typename
Y
,
typename
Dim
>
void
operator
()(
const
Context
&
place
,
X
*
x
,
Y
*
y
,
const
Dim
&
dim
)
{
auto
x_dim
=
x
->
dimensions
();
auto
t_dim
=
x_dim
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
dim
.
size
());
i
++
)
{
t_dim
[
dim
[
i
]]
=
1
;
}
auto
r_dim
=
x_dim
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
r_dim
.
size
());
i
++
)
{
r_dim
[
i
]
=
1
;
}
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
dim
.
size
());
i
++
)
{
r_dim
[
dim
[
i
]]
=
x_dim
[
dim
[
i
]];
}
auto
y_dim
=
y
->
dimensions
();
auto
x_max
=
x
->
maximum
(
dim
);
y
->
device
(
place
)
=
(
x_max
+
(
*
x
-
x_max
.
reshape
(
t_dim
).
broadcast
(
r_dim
)).
exp
().
sum
(
dim
).
log
())
.
reshape
(
y_dim
);
}
};
template
<
typename
T
,
typename
Context
>
void
LogsumexpKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keepdim
,
bool
reduce_all
,
DenseTensor
*
out
)
{
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
auto
&
input_dim_size
=
x
.
dims
().
size
();
// The dims has full dim, set the reduce_all is True
reduce_all
|=
(
static_cast
<
const
int
>
(
axis
.
size
())
==
input_dim_size
);
if
(
reduce_all
)
{
// Flatten and reduce 1-D tensor
auto
input
=
phi
::
EigenVector
<
T
>::
Flatten
(
x
);
auto
output
=
phi
::
EigenScalar
<
T
>::
From
(
*
out
);
auto
&
place
=
*
dev_ctx
.
eigen_device
();
auto
reduce_dim
=
Eigen
::
array
<
int
,
1
>
({{
0
}});
LogsumexpFunctor
()(
place
,
&
input
,
&
output
,
reduce_dim
);
}
else
{
int
ndim
=
input_dim_size
;
int
rdim
=
axis
.
size
();
// comments for accelerating compiling temporarily.
// HANDLE_DIM(6, 5);
// HANDLE_DIM(6, 4);
// HANDLE_DIM(6, 3);
// HANDLE_DIM(6, 2);
// HANDLE_DIM(6, 1);
// HANDLE_DIM(5, 4);
// HANDLE_DIM(5, 3);
// HANDLE_DIM(5, 2);
// HANDLE_DIM(5, 1);
HANDLE_DIM
(
4
,
3
);
HANDLE_DIM
(
4
,
2
);
HANDLE_DIM
(
4
,
1
);
HANDLE_DIM
(
3
,
2
);
HANDLE_DIM
(
3
,
1
);
HANDLE_DIM
(
2
,
1
);
}
}
}
// namespace phi
paddle/phi/kernels/logsumexp_grad_kernel.h
已删除
100644 → 0
浏览文件 @
3a6f1135
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
LogsumexpGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
in
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int
>&
axis
,
bool
keepdim
,
bool
reduce_all
,
DenseTensor
*
in_grad
);
}
// namespace phi
paddle/phi/kernels/logsumexp_kernel.h
已删除
100644 → 0
浏览文件 @
3a6f1135
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
LogsumexpKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keepdim
,
bool
reduce_all
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/logsumexp_sig.cc
已删除
100644 → 0
浏览文件 @
3a6f1135
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
LogsumexpGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"logsumexp_grad"
,
{
"X"
,
"Out"
,
GradVarName
(
"Out"
)},
{
"axis"
,
"keepdim"
,
"reduce_all"
},
{
GradVarName
(
"X"
)});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
logsumexp_grad
,
phi
::
LogsumexpGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录