未验证 提交 051e55c6 编写于 作者: L LoneRanger 提交者: GitHub

replace the PolynomialDecay、NoamDecay、LinearLrWarmup、ReduceLROnPlateau in...

replace the PolynomialDecay、NoamDecay、LinearLrWarmup、ReduceLROnPlateau in fluid with 2.0 version (#54806)

* remove the ReduceLROnPlateau in fluid

* fix bug

* remove the PolynomialDecay in fluid

* remove the LinearLrWarmup in fluid

* fix bug

* remove the NoamDecay in fluid

* fix bug

* fix bug

* fix bug
上级 8ede4a9c
......@@ -21,12 +21,7 @@ from .. import unique_name
from ..framework import Variable
from ..data_feeder import check_type
__all__ = [
'NoamDecay',
'PolynomialDecay',
'LinearLrWarmup',
'ReduceLROnPlateau',
]
__all__ = []
class LearningRateDecay:
......@@ -127,499 +122,6 @@ class LearningRateDecay:
raise NotImplementedError()
class PolynomialDecay(LearningRateDecay):
r"""
:api_attr: imperative
Applies polynomial decay to the initial learning rate.
The algorithm can be described as following.
If cycle is set to True, then:
.. math::
decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps})
decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate
If cycle is set to False, then:
.. math::
global\_step & = min(global\_step, decay\_steps)
decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
decay_steps(int): The decay step size. It determines the decay cycle.
end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
power(float, optional): Power of polynomial. The default value is 1.0.
cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
start_lr = 0.01
total_step = 5000
end_lr = 0
with fluid.dygraph.guard():
emb = paddle.nn.Embedding(10, 10)
optimizer = fluid.optimizer.SGD(
learning_rate = fluid.dygraph.PolynomialDecay(
start_lr, total_step, end_lr, power=1.0),
parameter_list = emb.parameters())
"""
def __init__(
self,
learning_rate,
decay_steps,
end_learning_rate=0.0001,
power=1.0,
cycle=False,
begin=0,
step=1,
dtype='float32',
):
super().__init__(begin, step, dtype)
self.learning_rate = learning_rate
self.decay_steps = decay_steps
self.end_learning_rate = end_learning_rate
self.power = power
self.cycle = cycle
def step(self):
tmp_step_num = self.step_num
tmp_decay_steps = self.decay_steps
if self.cycle:
div_res = paddle.ceil(
self.create_lr_var(tmp_step_num / float(self.decay_steps))
)
if tmp_step_num == 0:
div_res = self.create_lr_var(1.0)
tmp_decay_steps = self.decay_steps * div_res
else:
tmp_step_num = self.create_lr_var(
tmp_step_num
if tmp_step_num < self.decay_steps
else self.decay_steps
)
decayed_lr = (self.learning_rate - self.end_learning_rate) * (
(1 - tmp_step_num / tmp_decay_steps) ** self.power
) + self.end_learning_rate
return decayed_lr
class NoamDecay(LearningRateDecay):
r"""
:api_attr: imperative
Applies Noam decay to the initial learning rate.
The algorithm can be described as following.
.. math::
decayed\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
Parameters:
d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable,
it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable,
it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
learning_rate(Variable|float|int): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number. Default 1.0
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
warmup_steps = 100
learning_rate = 0.01
with fluid.dygraph.guard():
emb = paddle.nn.Embedding(10, 10)
optimizer = fluid.optimizer.SGD(
learning_rate = fluid.dygraph.NoamDecay(
1/(warmup_steps *(learning_rate ** 2)),
warmup_steps),
parameter_list = emb.parameters())
"""
def __init__(
self,
d_model,
warmup_steps,
begin=1,
step=1,
dtype='float32',
learning_rate=1.0,
):
super().__init__(begin, step, dtype)
self.learning_rate = learning_rate
self.d_model = d_model
self.warmup_steps = warmup_steps
def step(self):
from .. import layers
a = self.create_lr_var(self.step_num**-0.5)
b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
lr_value = (
self.learning_rate * (self.d_model**-0.5) * paddle.minimum(a, b)
)
return lr_value
class LinearLrWarmup(LearningRateDecay):
"""
:api_attr: imperative
This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
When global_step < warmup_steps, learning rate is updated as:
.. code-block:: text
linear_step = end_lr - start_lr
lr = start_lr + linear_step * (global_step / warmup_steps)
where start_lr is the initial learning rate, and end_lr is the final learning rate;
When global_step >= warmup_steps, learning rate is updated as:
.. code-block:: text
lr = learning_rate
where lr is the learning_rate after warm-up.
Args:
learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
warmup_steps (int): Steps for warm up.
start_lr (float): Initial learning rate of warm up.
end_lr (float): Final learning rate of warm up.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
Variable: Warm-up learning rate with the same data type as learning_rate.
Examples:
.. code-block:: python
import paddle.fluid as fluid
learning_rate = 0.1
warmup_steps = 50
start_lr = 0
end_lr = 0.1
with fluid.dygraph.guard():
lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
"""
def __init__(
self,
learning_rate,
warmup_steps,
start_lr,
end_lr,
begin=1,
step=1,
dtype='float32',
):
super().__init__(begin, step, dtype)
type_check = (
isinstance(learning_rate, float)
or isinstance(learning_rate, int)
or isinstance(learning_rate, LearningRateDecay)
)
if not type_check:
raise TypeError(
"the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}".format(
learning_rate
)
)
self.learning_rate = learning_rate
self.warmup_steps = warmup_steps
self.start_lr = start_lr
assert (
end_lr > start_lr
), "end_lr {} must be greater than start_lr {}".format(end_lr, start_lr)
self.lr_ratio_before_warmup = (float(end_lr) - float(start_lr)) / float(
warmup_steps
)
def step(self):
base_lr = self.learning_rate
if isinstance(self.learning_rate, LearningRateDecay):
base_lr = base_lr()
from .. import layers
if self.step_num < self.warmup_steps:
return self.lr_ratio_before_warmup * self.step_num + self.start_lr
else:
return base_lr
class ReduceLROnPlateau(LearningRateDecay):
"""
:api_attr: imperative
Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate
by 2 to 10 times once model performance has no longer improvement.
The ``loss`` is the one which has been pass into ``step`` , it must be 0-D Tensor with shape []. When ``loss``
stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` .
(Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number
of epochs, the learning rate will be reduced.)
In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.
Args:
learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` , the learning
rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
It should be less than 1.0. Default: 0.1.
patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
Default: 10.
verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
ignored. Default: 1e-8.
dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. Default: 'float32'.
Returns:
Reduced learning rate.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
import numpy as np
with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
input = fluid.dygraph.to_variable(x)
reduce_lr = fluid.dygraph.ReduceLROnPlateau(
learning_rate = 1.0,
decay_rate = 0.5,
patience = 5,
verbose = True,
cooldown = 3)
adam = fluid.optimizer.Adam(
learning_rate = reduce_lr,
parameter_list = linear.parameters())
for epoch in range(10):
total_loss = 0
for bath_id in range(5):
out = linear(input)
loss = paddle.mean(out)
total_loss += loss
adam.minimize(loss)
avg_loss = total_loss/5
# adjust learning rate according to avg_loss
reduce_lr.step(avg_loss)
lr = adam.current_step_lr()
print("current avg_loss is %s, current lr is %s" % (float(avg_loss), lr))
"""
def __init__(
self,
learning_rate,
mode='min',
decay_rate=0.1,
patience=10,
verbose=False,
threshold=1e-4,
threshold_mode='rel',
cooldown=0,
min_lr=0,
eps=1e-8,
dtype='float32',
):
super().__init__(dtype=dtype)
mode = mode.lower()
if mode not in ['min', 'max']:
raise ValueError('mode ' + mode + ' is unknown!')
self.mode = mode
if decay_rate >= 1.0:
raise ValueError(
'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
)
self.decay_rate = self.create_lr_var(decay_rate)
threshold_mode = threshold_mode.lower()
if threshold_mode not in ['rel', 'abs']:
raise ValueError(
'threshold mode ' + threshold_mode + ' is unknown!'
)
self.threshold_mode = threshold_mode
check_type(
learning_rate,
'learning_rate',
(float, int, Variable),
'ReduceLROnPlateau',
)
if not isinstance(learning_rate, (float, int, Variable)):
raise TypeError(
"The type of 'learning_rate' in 'ReduceLROnPlateau' must be 'float, int, Variable', but received %s."
% type(learning_rate)
)
self.learning_rate = learning_rate
self.verbose = verbose
self.patience = patience
self.threshold = threshold
self.threshold_mode = threshold_mode
self.cooldown = cooldown
self.min_lr = self.create_lr_var(min_lr)
self.eps = eps
self.cooldown_counter = 0
self.best_loss = None
self.num_bad_epochs = 0
self.epoch_num = 0
# "cooldown_counter / best_loss / num_bad_epochs / epoch_num / learning_rate" will be stored.
def _state_keys(self):
self.keys = [
'cooldown_counter',
'best_loss',
'num_bad_epochs',
'epoch_num',
'learning_rate',
]
def __call__(self):
if not isinstance(self.learning_rate, Variable):
self.learning_rate = self.create_lr_var(self.learning_rate)
return self.learning_rate
def step(self, loss):
"""
It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .
The new learning rate will take effect on next call to ``optimizer.minimize`` .
Args:
loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce.
If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should
be 0-D Tensor with shape [].
Specially, if ``mode`` has been set to ``'max'`` , the learning rate will reduce when it stops ascending.
Returns:
None
Examples:
Please refer to the example of current LearningRateDecay.
"""
# loss.size must be 1
check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
assert np.prod(loss.shape) == 1, (
"The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
"Maybe that you should call paddle.mean to process it first.".format(
loss.shape
)
)
self.epoch_num += 1
if self.cooldown_counter > 0:
self.cooldown_counter -= 1
else:
if self.best_loss is None or self._is_better(loss, self.best_loss):
self.best_loss = loss
self.num_bad_epochs = 0
else:
self.num_bad_epochs += 1
if self.num_bad_epochs > self.patience:
self.cooldown_counter = self.cooldown
self.num_bad_epochs = 0
new_lr = paddle.maximum(
self.learning_rate * self.decay_rate, self.min_lr
)
if self.learning_rate - new_lr > self.eps:
if self.verbose:
print(
'Epoch {}: reducing learning rate from {} to {}.'.format(
self.epoch_num,
float(self.learning_rate),
float(new_lr),
)
)
self.learning_rate = new_lr
def _is_better(self, current, best):
if self.mode == 'min' and self.threshold_mode == 'rel':
return current < best - best * self.threshold
elif self.mode == 'min' and self.threshold_mode == 'abs':
return current < best - self.threshold
elif self.mode == 'max' and self.threshold_mode == 'rel':
return current > best + best * self.threshold
else:
return current > best + self.threshold
class _LearningRateEpochDecay(LearningRateDecay):
"""
:api_attr: imperative
......
......@@ -105,7 +105,7 @@ def noam_decay(d_model, warmup_steps, learning_rate=1.0):
"""
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
decay = imperate_lr.NoamDecay(
decay = paddle.optimizer.lr.NoamDecay(
d_model, warmup_steps, learning_rate=learning_rate
)
return decay
......@@ -343,7 +343,7 @@ def polynomial_decay(
"""
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
decay = imperate_lr.PolynomialDecay(
decay = paddle.optimizer.lr.PolynomialDecay(
learning_rate, decay_steps, end_learning_rate, power, cycle
)
return decay
......@@ -575,7 +575,7 @@ def linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
linear_step = float(end_lr) - float(start_lr)
with default_main_program()._lr_schedule_guard():
if in_dygraph_mode():
lr = imperate_lr.LinearLrWarmup(
lr = paddle.optimizer.lr.LinearWarmup(
learning_rate, warmup_steps, start_lr, end_lr
)
return lr
......
......@@ -368,9 +368,9 @@ def dyfunc_NaturalExpDecay():
def dyfunc_NoamDecay():
noam_decay = fluid.dygraph.NoamDecay(100, 100)
noam_decay = paddle.optimizer.lr.NoamDecay(100, 100)
lr = noam_decay()
return lr
return paddle.to_tensor(lr)
def dyfunc_PiecewiseDecay():
......@@ -385,9 +385,11 @@ def dyfunc_PolynomialDecay():
start_lr = 0.01
total_step = 5000
end_lr = 0
pd = fluid.dygraph.PolynomialDecay(start_lr, total_step, end_lr, power=1.0)
pd = paddle.optimizer.lr.PolynomialDecay(
start_lr, total_step, end_lr, power=1.0
)
lr = pd()
return lr
return paddle.to_tensor(lr)
class TestDygraphBasicApi_CosineDecay(unittest.TestCase):
......@@ -512,6 +514,13 @@ class TestDygraphBasicApi_PolynomialDecay(TestDygraphBasicApi_CosineDecay):
def setUp(self):
self.dygraph_func = dyfunc_PolynomialDecay
def get_dygraph_output(self):
with fluid.dygraph.guard():
fluid.default_startup_program.random_seed = SEED
fluid.default_main_program.random_seed = SEED
res = self.dygraph_func()
return res
def _dygraph_fn():
from paddle import fluid
......
......@@ -95,10 +95,10 @@ def train_static(args, batch_generator):
logits, lbl_word, lbl_weight
)
# define optimizer
learning_rate = fluid.layers.learning_rate_scheduler.noam_decay(
learning_rate = paddle.optimizer.lr.NoamDecay(
args.d_model, args.warmup_steps, args.learning_rate
)
optimizer = fluid.optimizer.Adam(
optimizer = paddle.optimizer.Adam(
learning_rate=learning_rate,
beta1=args.beta1,
beta2=args.beta2,
......@@ -208,16 +208,16 @@ def train_dygraph(args, batch_generator):
# define loss
criterion = CrossEntropyCriterion(args.label_smooth_eps)
# define optimizer
learning_rate = fluid.layers.learning_rate_scheduler.noam_decay(
learning_rate = paddle.optimizer.lr.NoamDecay(
args.d_model, args.warmup_steps, args.learning_rate
)
# define optimizer
optimizer = fluid.optimizer.Adam(
optimizer = paddle.optimizer.Adam(
learning_rate=learning_rate,
beta1=args.beta1,
beta2=args.beta2,
epsilon=float(args.eps),
parameter_list=transformer.parameters(),
parameters=transformer.parameters(),
)
# the best cross-entropy value with label smoothing
loss_normalizer = -(
......
......@@ -359,17 +359,17 @@ class TestImperativeOptimizerInverseTimeDecay(TestImperativeOptimizerBase):
class TestImperativeOptimizerPolynomialDecay(TestImperativeOptimizerBase):
def get_optimizer_dygraph(self, parameter_list):
optimizer = SGDOptimizer(
learning_rate=fluid.layers.polynomial_decay(
optimizer = paddle.optimizer.SGD(
learning_rate=paddle.optimizer.lr.PolynomialDecay(
learning_rate=0.1, decay_steps=5, cycle=self.cycle
),
parameter_list=parameter_list,
parameters=parameter_list,
)
return optimizer
def get_optimizer(self):
optimizer = SGDOptimizer(
learning_rate=fluid.layers.polynomial_decay(
optimizer = paddle.optimizer.SGD(
learning_rate=paddle.optimizer.lr.PolynomialDecay(
learning_rate=0.1, decay_steps=5, cycle=self.cycle
)
)
......@@ -408,17 +408,17 @@ class TestImperativeOptimizerCosineDecay(TestImperativeOptimizerBase):
class TestImperativeOptimizerNoamDecay(TestImperativeOptimizerBase):
def get_optimizer_dygraph(self, parameter_list):
optimizer = SGDOptimizer(
learning_rate=fluid.layers.noam_decay(
optimizer = paddle.optimizer.SGD(
learning_rate=paddle.optimizer.lr.NoamDecay(
d_model=512, warmup_steps=8000
),
parameter_list=parameter_list,
parameters=parameter_list,
)
return optimizer
def get_optimizer(self):
optimizer = SGDOptimizer(
learning_rate=fluid.layers.noam_decay(
optimizer = paddle.optimizer.SGD(
learning_rate=paddle.optimizer.lr.NoamDecay(
d_model=512, warmup_steps=8000
)
)
......
......@@ -128,8 +128,8 @@ class TestLearningRateDecayDygraph(unittest.TestCase):
gamma=0.5,
)
Step_scheduler = paddle.optimizer.lr.StepDecay(0.5, step_size=3)
Reducelr_scheduler = fluid.dygraph.ReduceLROnPlateau(
learning_rate=1.0, decay_rate=0.5, patience=5, cooldown=3
Reducelr_scheduler = paddle.optimizer.lr.ReduceOnPlateau(
learning_rate=1.0, factor=0.5, patience=5, cooldown=3
)
adam1 = fluid.optimizer.Adam(
......@@ -166,8 +166,8 @@ class TestLearningRateDecayDygraph(unittest.TestCase):
Step_scheduler_test = paddle.optimizer.lr.StepDecay(
0.5, step_size=3
)
Reducelr_scheduler_test = fluid.dygraph.ReduceLROnPlateau(
learning_rate=1.0, decay_rate=0.5, patience=5, cooldown=3
Reducelr_scheduler_test = paddle.optimizer.lr.ReduceOnPlateau(
learning_rate=1.0, factor=0.5, patience=5, cooldown=3
)
paddle.save(adam1.state_dict(), "save_path.pdopt")
......@@ -209,8 +209,8 @@ class TestLearningRateDecayDygraph(unittest.TestCase):
)
adam_test.set_dict(opt_state)
self.assertEqual(
adam_test._learning_rate.best_loss,
adam3._learning_rate.best_loss,
adam_test._learning_rate.best,
adam3._learning_rate.best,
"best_loss is different before and after set_dict",
)
self.assertEqual(
......@@ -224,8 +224,8 @@ class TestLearningRateDecayDygraph(unittest.TestCase):
"num_bad_epochs is different before and after set_dict",
)
self.assertEqual(
adam_test._learning_rate.epoch_num,
adam3._learning_rate.epoch_num,
adam_test._learning_rate.last_epoch,
adam3._learning_rate.last_epoch,
"epoch is different before and after set_dict",
)
self.assertEqual(
......@@ -245,35 +245,37 @@ class TestLearningRateDecayDygraph(unittest.TestCase):
right_result = noam_decay(
step, d_model, warmup_steps, learning_rate
)
lr.step()
fluid_result = lr()
self.assertAlmostEqual(
right_result,
fluid_result[0],
fluid_result,
msg='Failed lr scheduler in step {}, Python result is {}, Fluid result is {}'.format(
step, right_result, fluid_result[0]
step, right_result, fluid_result
),
)
def test_LinearLrWarmup(self):
with fluid.dygraph.guard():
lr = fluid.layers.polynomial_decay(
lr = paddle.optimizer.lr.PolynomialDecay(
learning_rate=1.0,
decay_steps=10,
end_learning_rate=0.0,
end_lr=0.0,
power=1.0,
)
lr = fluid.layers.linear_lr_warmup(
lr.step()
lr = paddle.optimizer.lr.LinearWarmup(
learning_rate=lr, warmup_steps=2, start_lr=0.0, end_lr=1.0
)
lr.step()
right_result = [0.5, 0.9, 0.8, 0.7, 0.6]
for i in range(5):
if i == 1:
lr.step()
t = lr()
np.testing.assert_allclose(
t.numpy().item(), right_result[i], rtol=1e-05
)
lr.step()
np.testing.assert_allclose(t, right_result[i], rtol=1e-05)
with self.assertRaises(TypeError):
lr = fluid.layers.linear_lr_warmup(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册