未验证 提交 050aa6fe 编写于 作者: H heliqi 提交者: GitHub

add flatten_contiguous_range OpConvert for Paddle-TRT (#38922)

* add trt_convert_flatten_contiguous_rang op

* trt version >7,support trt_convert_flatten_contiguous_rang

* trt version >7,support trt_convert_flatten_contiguous_rang

* trt version >7,support trt_convert_flatten_contiguous_rang

* test cast add trt version >=7 skip
上级 87ee3e4f
...@@ -46,8 +46,11 @@ void analysis::TensorRtSubgraphPass::ApplyImpl( ...@@ -46,8 +46,11 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
<< " is diabled by config in TensorRT"; << " is diabled by config in TensorRT";
return false; return false;
} }
return tensorrt::OpTeller::Global().Tell(node, no_calib_int8, bool is_ok = tensorrt::OpTeller::Global().Tell(node, no_calib_int8,
with_dynamic_shape); with_dynamic_shape);
if (!is_ok)
VLOG(3) << node->Op()->Type().c_str() << " op is not in TensorRT";
return is_ok;
}; };
framework::ir::SubGraphFuser fuser( framework::ir::SubGraphFuser fuser(
......
...@@ -1416,6 +1416,7 @@ USE_TRT_CONVERTER(elementwise_min_tensor); ...@@ -1416,6 +1416,7 @@ USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor); USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(transpose); USE_TRT_CONVERTER(transpose);
USE_TRT_CONVERTER(flatten); USE_TRT_CONVERTER(flatten);
USE_TRT_CONVERTER(flatten_contiguous_range);
USE_TRT_CONVERTER(matmul); USE_TRT_CONVERTER(matmul);
USE_TRT_CONVERTER(conv2d); USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu); USE_TRT_CONVERTER(relu);
......
...@@ -3,7 +3,7 @@ nv_library(tensorrt_converter ...@@ -3,7 +3,7 @@ nv_library(tensorrt_converter
SRCS matmul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc SRCS matmul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc group_norm_op.cc batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc group_norm_op.cc
pad_op.cc split_op.cc prelu_op.cc leaky_relu_op.cc gelu_op.cc layer_norm_op.cc multihead_matmul_op.cc pad_op.cc split_op.cc prelu_op.cc leaky_relu_op.cc gelu_op.cc layer_norm_op.cc multihead_matmul_op.cc
shuffle_channel_op.cc swish_op.cc instance_norm_op.cc stack_op.cc transpose_op.cc flatten_op.cc shuffle_channel_op.cc swish_op.cc instance_norm_op.cc stack_op.cc transpose_op.cc flatten_op.cc flatten_contiguous_range_op.cc
emb_eltwise_layernorm.cc skip_layernorm.cc scale_op.cc slice_op.cc hard_sigmoid_op.cc hard_swish_op.cc clip_op.cc emb_eltwise_layernorm.cc skip_layernorm.cc scale_op.cc slice_op.cc hard_sigmoid_op.cc hard_swish_op.cc clip_op.cc
gather_op.cc gather_op.cc
anchor_generator_op.cc anchor_generator_op.cc
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* flatten_contiguous_range trt converter
*/
class FlattenContiguousRangeOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
int dims = input->getDimensions().nbDims;
int start_axis = BOOST_GET_CONST(int, op_desc.GetAttr("start_axis"));
int stop_axis = BOOST_GET_CONST(int, op_desc.GetAttr("stop_axis"));
nvinfer1::IShuffleLayer* layer = nullptr;
if (!engine_->with_dynamic_shape()) {
if (start_axis < 0) start_axis += dims + 1;
if (stop_axis < 0) stop_axis += dims + 1;
int dim_prod = 1;
nvinfer1::Dims flatten_dim;
flatten_dim.nbDims = dims - (stop_axis - start_axis);
for (int i = 0, j = 0; i < dims; ++i) {
if (start_axis <= i + 1 && i + 1 <= stop_axis) {
int dim_i = input->getDimensions().d[i];
PADDLE_ENFORCE_GT(dim_i, 0, platform::errors::InvalidArgument(
"flatten_contiguous_range input dim "
"should be > 0, but got %d.",
dim_i));
dim_prod *= dim_i;
if (i + 1 == stop_axis) {
flatten_dim.d[j++] = dim_prod;
}
} else {
flatten_dim.d[j++] = input->getDimensions().d[i];
}
}
layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
layer->setReshapeDimensions(flatten_dim);
} else {
if (start_axis < 0) start_axis += dims;
if (stop_axis < 0) stop_axis += dims;
auto* shape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shape, *input);
auto* shape_layer_itensor = shape_layer->getOutput(0);
nvinfer1::Dims start_dim, size_dim, stride_dim;
start_dim.nbDims = 1;
size_dim.nbDims = 1;
stride_dim.nbDims = 1;
start_dim.d[0] = start_axis;
size_dim.d[0] = stop_axis - start_axis + 1;
stride_dim.d[0] = 1;
auto* slice_layer =
TRT_ENGINE_ADD_LAYER(engine_, Slice, *shape_layer_itensor, start_dim,
size_dim, stride_dim);
uint32_t reduce_dim = 1;
auto* reduce_prod_layer = TRT_ENGINE_ADD_LAYER(
engine_, Reduce, *(slice_layer->getOutput(0)),
nvinfer1::ReduceOperation::kPROD, reduce_dim, true);
nvinfer1::ITensor* input_shape = nullptr;
if (start_axis == 0 && stop_axis == dims - 1) {
input_shape = reduce_prod_layer->getOutput(0);
} else {
std::vector<nvinfer1::ITensor*> itensors;
if (start_axis > 0) {
nvinfer1::Dims left_start_dim, left_size_dim, left_stride_dim;
left_start_dim.nbDims = 1;
left_size_dim.nbDims = 1;
left_stride_dim.nbDims = 1;
left_start_dim.d[0] = 0;
left_size_dim.d[0] = start_axis;
left_stride_dim.d[0] = 1;
auto* slice_layer_left = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *shape_layer_itensor, left_start_dim,
left_size_dim, left_stride_dim);
itensors.push_back(slice_layer_left->getOutput(0));
}
itensors.push_back(reduce_prod_layer->getOutput(0));
if (stop_axis < dims - 1) {
nvinfer1::Dims right_start_dim, right_size_dim, right_stride_dim;
right_start_dim.nbDims = 1;
right_size_dim.nbDims = 1;
right_stride_dim.nbDims = 1;
right_start_dim.d[0] = stop_axis + 1;
right_size_dim.d[0] = dims - stop_axis - 1;
right_stride_dim.d[0] = 1;
auto* slice_layer_right = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *shape_layer_itensor, right_start_dim,
right_size_dim, right_stride_dim);
itensors.push_back(slice_layer_right->getOutput(0));
}
auto* concat_layer = TRT_ENGINE_ADD_LAYER(
engine_, Concatenation, itensors.data(), itensors.size());
concat_layer->setAxis(0);
input_shape = concat_layer->getOutput(0);
}
layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
layer->setInput(1, *input_shape);
}
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "flatten_contiguous_range", {output_name},
test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(flatten_contiguous_range,
FlattenContiguousRangeOpConverter);
...@@ -55,6 +55,7 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -55,6 +55,7 @@ struct SimpleOpTypeSetTeller : public Teller {
// #endif // #endif
#if IS_TRT_VERSION_GE(7000) #if IS_TRT_VERSION_GE(7000)
teller_set.insert("tile"); teller_set.insert("tile");
teller_set.insert("flatten_contiguous_range");
#endif #endif
#if CUDA_VERSION >= 10020 #if CUDA_VERSION >= 10020
teller_set.insert("reshape"); teller_set.insert("reshape");
...@@ -531,6 +532,37 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8, ...@@ -531,6 +532,37 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
if (axis != 1) return false; if (axis != 1) return false;
} }
} }
if (op_type == "flatten_contiguous_range") {
if (!with_dynamic_shape) {
int start_axis = BOOST_GET_CONST(int, desc.GetAttr("start_axis"));
int stop_axis = BOOST_GET_CONST(int, desc.GetAttr("stop_axis"));
auto x_var_name = desc.Input("X")[0];
auto* block = desc.Block();
if (block == nullptr) {
VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass.";
return false;
}
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
int dims = x_shape.size();
if (start_axis < 0) start_axis += dims;
if (start_axis == 0) {
VLOG(3) << "TRT flatten_contiguous_range not support the "
"batch-dimension being changed";
return false;
}
if (stop_axis < 0) stop_axis += dims;
for (int i = start_axis; i <= stop_axis; ++i) {
if (x_shape[i] < 0) {
VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
"should be > 0";
return false;
}
}
}
}
if (op_type == "gather") { if (op_type == "gather") {
auto gather_inputs = desc.Inputs(); auto gather_inputs = desc.Inputs();
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import unittest
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertFlattenContiguousRangeTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input(batch):
return np.random.random([2, batch, 4, 8, 3]).astype(np.float32)
for batch in [1, 2, 4]:
for start_axis in range(5):
for stop_axis in range(start_axis, 5):
type = "flatten_contiguous_range"
op_outputs = {
"Out": ["output_data"],
"XShape": ["xshape_data"]
}
ops_config = [{
"op_type": type,
"op_inputs": {
"X": ["input_data"]
},
"op_outputs": op_outputs,
"op_attrs": {
"start_axis": start_axis,
"stop_axis": stop_axis,
}
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input, batch))
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {"input_data": [2, 1, 4, 8, 3]}
self.dynamic_shape.max_input_shape = {"input_data": [2, 4, 4, 8, 3]}
self.dynamic_shape.opt_input_shape = {"input_data": [2, 2, 4, 8, 3]}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[0] * 10 >= 7000:
if dynamic_shape:
return 1, 2
else:
if attrs[0]['start_axis'] == 0:
return 0, 3
else:
return 1, 2
else:
return 0, 3
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册