提交 04a90035 编写于 作者: Q qijun

add test_fit_a_line

上级 f818b111
import paddle.v2 as paddle
import paddle.v2.framework.layers as layers
import paddle.v2.framework.core as core
import paddle.v2.framework.optimizer as optimizer
from paddle.v2.framework.framework import Program, g_program
from paddle.v2.framework.executor import Executor
import numpy as np
program = Program()
x = layers.data(name='x', shape=[13], data_type='float32', program=program)
y_predict = layers.fc(input=x, size=1, act=None, program=program)
y = layers.data(name='y', shape=[1], data_type='float32', program=program)
cost = layers.square_error_cost(input=y_predict, label=y, program=program)
avg_cost = layers.mean(x=cost, program=program)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
opts = sgd_optimizer.minimize(avg_cost)
# print str(program)
BATCH_SIZE = 2
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
PASS_NUM = 1
for pass_id in range(PASS_NUM):
for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("float32")
y_data = np.expand_dims(y_data, axis=1)
tensor_x = core.LoDTensor()
tensor_x.set(x_data, place)
tensor_y = core.LoDTensor()
tensor_y.set(y_data, place)
outs = exe.run(program,
feed={'x': tensor_x,
'y': tensor_y},
fetch_list=[avg_cost])
out = np.array(outs[0])
print out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册