Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0470e9da
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2310
Star
20933
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0470e9da
编写于
7月 13, 2022
作者:
H
houj04
提交者:
GitHub
7月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add grid_sampler and update relu op for xpu. (#44227)
* grid sampler op for xpu. test=kunlun * update relu xdnn api. test=kunlun.
上级
c797e64d
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
444 addition
and
11 deletion
+444
-11
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+2
-2
paddle/fluid/operators/activation_op_xpu.cc
paddle/fluid/operators/activation_op_xpu.cc
+18
-9
paddle/fluid/operators/grid_sampler_op_xpu.cc
paddle/fluid/operators/grid_sampler_op_xpu.cc
+138
-0
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+2
-0
python/paddle/fluid/tests/unittests/xpu/test_grid_sampler_op_xpu.py
...dle/fluid/tests/unittests/xpu/test_grid_sampler_op_xpu.py
+284
-0
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
0470e9da
...
...
@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
if
(
NOT DEFINED XPU_BASE_URL
)
set
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022070
7
"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022070
8
"
)
else
()
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
endif
()
...
...
@@ -19,7 +19,7 @@ endif()
if
(
NOT DEFINED XPU_XDNN_BASE_URL
)
set
(
XPU_XDNN_BASE_URL_WITHOUT_DATE
"https://klx-sdk-release-public.su.bcebos.com/xdnn/dev"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022070
7
"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022070
8
"
)
else
()
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL
}
"
)
endif
()
...
...
paddle/fluid/operators/activation_op_xpu.cc
浏览文件 @
0470e9da
...
...
@@ -157,15 +157,6 @@ struct XPUReciprocalGradFunctor : public BaseActivationFunctor<T> {
}
};
template
<
typename
T
>
struct
XPUReluFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
relu
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUReluGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
...
...
@@ -416,6 +407,24 @@ struct XPUPowGradFunctor : public BaseActivationFunctor<T> {
}
};
template
<
typename
T
>
struct
XPUReluFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
XPUType
*
x_data
=
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
());
XPUType
*
y_data
=
reinterpret_cast
<
XPUType
*>
(
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
auto
xpu_context
=
ctx
.
device_context
<
paddle
::
platform
::
XPUDeviceContext
>
().
x_context
();
int
r
=
xpu
::
relu
(
xpu_context
,
x_data
,
y_data
,
x
->
numel
(),
nullptr
,
nullptr
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"relu"
);
}
};
template
<
typename
T
>
struct
XPUSoftPlusFunctor
:
public
BaseActivationFunctor
<
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
...
...
paddle/fluid/operators/grid_sampler_op_xpu.cc
0 → 100644
浏览文件 @
0470e9da
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
GridSamplerXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
Unavailable
(
"This kernel only runs on XPU."
));
// input and output data
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
grid
=
context
.
Input
<
Tensor
>
(
"Grid"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
h
=
input
->
dims
()[
2
];
int
w
=
input
->
dims
()[
3
];
int
out_h
=
grid
->
dims
()[
1
];
int
out_w
=
grid
->
dims
()[
2
];
// attrs
// paddle.nn.functional.grid_sample(x, grid, mode='bilinear',
// padding_mode='zeros', align_corners=True, name=None)
const
std
::
string
mode
=
context
.
Attr
<
std
::
string
>
(
"mode"
);
const
std
::
string
padding_mode
=
context
.
Attr
<
std
::
string
>
(
"padding_mode"
);
bool
align_corners_bool
=
context
.
Attr
<
bool
>
(
"align_corners"
);
const
std
::
string
data_format
=
paddle
::
framework
::
DataLayoutToString
(
input
->
layout
());
// attr to real param
bool
is_nearest_bool
;
if
(
mode
==
"bilinear"
)
{
is_nearest_bool
=
false
;
}
else
if
(
mode
==
"nearest"
)
{
is_nearest_bool
=
true
;
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"should not reach here: mode should be either 'bilinear' or "
"'nearest', bot got %s."
,
mode
));
}
// attention: 0: zeros, 2: reflection, 1: border according to XDNN api.
int
padding_mode_int
;
if
(
padding_mode
==
"zeros"
)
{
padding_mode_int
=
0
;
}
else
if
(
padding_mode
==
"reflection"
)
{
padding_mode_int
=
2
;
}
else
if
(
padding_mode
==
"border"
)
{
padding_mode_int
=
1
;
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"should not reach here: padding_mode should be either 'zeros' or "
"'reflection' or 'border', bot got %s."
,
padding_mode
));
}
bool
is_nchw_bool
;
if
(
data_format
==
"NCHW"
)
{
is_nchw_bool
=
true
;
}
else
if
(
data_format
==
"NHWC"
)
{
is_nchw_bool
=
false
;
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"should not reach here: data_format should be either 'NCHW' or "
"'NHWC', bot got %s."
,
data_format
));
}
// data pointers
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
grid_data
=
grid
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
({
n
,
c
,
out_h
,
out_w
},
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
// int grid_sample(Context* ctx, const T* x, const T* grid, T* y, int n, int
// c, int xh, int xw, int yh, int yw, bool is_nearest, bool align_corners,
// int padding_mode, bool is_nchw);
int
r
=
xpu
::
grid_sample
(
dev_ctx
.
x_context
(),
input_data
,
grid_data
,
output_data
,
n
,
c
,
h
,
w
,
out_h
,
out_w
,
is_nearest_bool
,
align_corners_bool
,
padding_mode_int
,
is_nchw_bool
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"grid_sampler"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
grid_sampler
,
ops
::
GridSamplerXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
0470e9da
...
...
@@ -240,6 +240,8 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"grid_sampler"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"hard_swish_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
...
...
python/paddle/fluid/tests/unittests/xpu/test_grid_sampler_op_xpu.py
0 → 100644
浏览文件 @
0470e9da
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
import
paddle
from
op_test
import
OpTest
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
def
AffineGrid
(
theta
,
grid_shape
):
n
=
grid_shape
[
0
]
h
=
grid_shape
[
1
]
w
=
grid_shape
[
2
]
h_idx
=
np
.
repeat
(
np
.
linspace
(
-
1
,
1
,
h
)[
np
.
newaxis
,
:],
w
,
axis
=
0
).
T
[:,
:,
np
.
newaxis
]
w_idx
=
np
.
repeat
(
np
.
linspace
(
-
1
,
1
,
w
)[
np
.
newaxis
,
:],
h
,
axis
=
0
)[:,
:,
np
.
newaxis
]
grid
=
np
.
concatenate
([
w_idx
,
h_idx
,
np
.
ones
([
h
,
w
,
1
])],
axis
=
2
)
# h * w * 3
grid
=
np
.
repeat
(
grid
[
np
.
newaxis
,
:],
n
,
axis
=
0
)
# n * h * w *3
ret
=
np
.
zeros
([
n
,
h
*
w
,
2
])
theta
=
theta
.
transpose
([
0
,
2
,
1
])
for
i
in
range
(
len
(
theta
)):
ret
[
i
]
=
np
.
dot
(
grid
[
i
].
reshape
([
h
*
w
,
3
]),
theta
[
i
])
return
ret
.
reshape
([
n
,
h
,
w
,
2
]).
astype
(
"float64"
)
def
getGridPointValue
(
data
,
x
,
y
):
data_shape
=
data
.
shape
N
=
data_shape
[
0
]
C
=
data_shape
[
1
]
in_H
=
data_shape
[
2
]
in_W
=
data_shape
[
3
]
out_H
=
x
.
shape
[
1
]
out_W
=
x
.
shape
[
2
]
#out = np.zeros(data_shape, dtype='float64')
out
=
np
.
zeros
([
N
,
C
,
out_H
,
out_W
],
dtype
=
'float64'
)
for
i
in
range
(
N
):
for
j
in
range
(
out_H
):
for
k
in
range
(
out_W
):
if
y
[
i
,
j
,
k
]
<
0
or
y
[
i
,
j
,
k
]
>
in_H
-
1
or
x
[
i
,
j
,
k
]
<
0
or
x
[
i
,
j
,
k
]
>
in_W
-
1
:
out
[
i
,
:,
j
,
k
]
=
0
else
:
out
[
i
,
:,
j
,
k
]
=
data
[
i
,
:,
y
[
i
,
j
,
k
],
x
[
i
,
j
,
k
]]
return
out
def
clip
(
x
,
min_n
,
max_n
):
return
np
.
maximum
(
np
.
minimum
(
x
,
max_n
),
min_n
)
def
unnormalizeAndClip
(
grid_slice
,
max_val
,
align_corners
,
padding_mode
):
if
align_corners
:
grid_slice
=
0.5
*
((
grid_slice
.
astype
(
'float64'
)
+
1.0
)
*
max_val
)
else
:
grid_slice
=
0.5
*
((
grid_slice
.
astype
(
'float64'
)
+
1.0
)
*
(
max_val
+
1
))
-
0.5
if
padding_mode
==
"border"
:
grid_slice
=
clip
(
grid_slice
,
0
,
max_val
)
elif
padding_mode
==
"reflection"
:
double_range
=
2
*
max_val
if
align_corners
else
(
max_val
+
1
)
*
2
grid_abs
=
np
.
abs
(
grid_slice
)
if
align_corners
else
np
.
abs
(
grid_slice
+
0.5
)
extra
=
grid_abs
-
np
.
floor
(
grid_abs
/
double_range
)
*
double_range
grid_slice
=
np
.
minimum
(
extra
,
double_range
-
extra
)
grid_slice
=
grid_slice
if
align_corners
else
clip
(
grid_slice
-
0.5
,
0
,
max_val
)
return
grid_slice
def
GridSampler
(
data
,
grid
,
align_corners
=
True
,
mode
=
"bilinear"
,
padding_mode
=
"zeros"
):
dims
=
data
.
shape
N
=
dims
[
0
]
in_C
=
dims
[
1
]
in_H
=
dims
[
2
]
in_W
=
dims
[
3
]
out_H
=
grid
.
shape
[
1
]
out_W
=
grid
.
shape
[
2
]
x
=
grid
[:,
:,
:,
0
]
y
=
grid
[:,
:,
:,
1
]
y_max
=
in_H
-
1
x_max
=
in_W
-
1
x
=
unnormalizeAndClip
(
x
,
x_max
,
align_corners
,
padding_mode
)
y
=
unnormalizeAndClip
(
y
,
y_max
,
align_corners
,
padding_mode
)
if
mode
==
"bilinear"
:
x0
=
np
.
floor
(
x
).
astype
(
'int32'
)
x1
=
x0
+
1
y0
=
np
.
floor
(
y
).
astype
(
'int32'
)
y1
=
y0
+
1
wa
=
np
.
tile
(((
x1
-
x
)
*
(
y1
-
y
)).
reshape
((
N
,
1
,
out_H
,
out_W
)),
(
1
,
in_C
,
1
,
1
))
wb
=
np
.
tile
(((
x1
-
x
)
*
(
y
-
y0
)).
reshape
((
N
,
1
,
out_H
,
out_W
)),
(
1
,
in_C
,
1
,
1
))
wc
=
np
.
tile
(((
x
-
x0
)
*
(
y1
-
y
)).
reshape
((
N
,
1
,
out_H
,
out_W
)),
(
1
,
in_C
,
1
,
1
))
wd
=
np
.
tile
(((
x
-
x0
)
*
(
y
-
y0
)).
reshape
((
N
,
1
,
out_H
,
out_W
)),
(
1
,
in_C
,
1
,
1
))
va
=
getGridPointValue
(
data
,
x0
,
y0
)
vb
=
getGridPointValue
(
data
,
x0
,
y1
)
vc
=
getGridPointValue
(
data
,
x1
,
y0
)
vd
=
getGridPointValue
(
data
,
x1
,
y1
)
out
=
(
wa
*
va
+
wb
*
vb
+
wc
*
vc
+
wd
*
vd
).
astype
(
'float64'
)
elif
mode
==
"nearest"
:
x
=
np
.
round
(
x
).
astype
(
'int32'
)
y
=
np
.
round
(
y
).
astype
(
'int32'
)
out
=
getGridPointValue
(
data
,
x
,
y
)
return
out
class
XPUTestGridSamplerOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'grid_sampler'
self
.
use_dynamic_create_class
=
False
class
TestXPUGridSamplerOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
init_dtype
()
self
.
op_type
=
'grid_sampler'
self
.
use_cudnn
=
False
self
.
align_corners
=
True
self
.
padding_mode
=
"zeros"
self
.
mode
=
"bilinear"
self
.
initTestCase
()
x
=
np
.
random
.
uniform
(
-
10
,
10
,
self
.
x_shape
).
astype
(
self
.
dtype
)
theta
=
np
.
zeros
(
self
.
theta_shape
).
astype
(
self
.
dtype
)
for
i
in
range
(
self
.
theta_shape
[
0
]):
for
j
in
range
(
2
):
for
k
in
range
(
3
):
theta
[
i
,
j
,
k
]
=
np
.
random
.
rand
(
1
)[
0
]
grid
=
AffineGrid
(
theta
,
self
.
grid_shape
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Grid'
:
grid
}
self
.
attrs
=
{
'use_cudnn'
:
self
.
use_cudnn
,
"align_corners"
:
self
.
align_corners
,
"padding_mode"
:
self
.
padding_mode
,
"mode"
:
self
.
mode
,
}
self
.
outputs
=
{
'Output'
:
GridSampler
(
x
,
grid
,
self
.
align_corners
,
self
.
mode
,
self
.
padding_mode
)
}
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
8
,
8
)
self
.
grid_shape
=
(
2
,
7
,
9
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
True
self
.
padding_mode
=
"zeros"
self
.
mode
=
"bilinear"
def
init_dtype
(
self
):
self
.
dtype
=
self
.
in_type
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
,
'Grid'
],
'Output'
)
class
TestGridSample1
(
TestXPUGridSamplerOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
6
)
self
.
grid_shape
=
(
2
,
8
,
9
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
False
self
.
padding_mode
=
"zeros"
self
.
mode
=
"bilinear"
class
TestGridSample2
(
TestXPUGridSamplerOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
6
)
self
.
grid_shape
=
(
2
,
8
,
9
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
False
self
.
padding_mode
=
"border"
self
.
mode
=
"bilinear"
class
TestGridSample3
(
TestXPUGridSamplerOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
6
)
self
.
grid_shape
=
(
2
,
8
,
9
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
False
self
.
padding_mode
=
"reflection"
self
.
mode
=
"bilinear"
class
TestGridSample4
(
TestXPUGridSamplerOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
6
)
self
.
grid_shape
=
(
2
,
8
,
9
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
True
self
.
padding_mode
=
"reflection"
self
.
mode
=
"bilinear"
class
TestGridSample5
(
TestXPUGridSamplerOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
6
)
self
.
grid_shape
=
(
2
,
8
,
9
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
False
self
.
padding_mode
=
"reflection"
self
.
mode
=
"nearest"
class
TestGridSample6
(
TestXPUGridSamplerOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
128
,
128
)
self
.
grid_shape
=
(
2
,
130
,
130
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
False
self
.
padding_mode
=
"reflection"
self
.
mode
=
"bilinear"
class
TestGridSample7
(
TestXPUGridSamplerOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
128
,
128
)
self
.
grid_shape
=
(
2
,
130
,
130
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
True
self
.
padding_mode
=
"zeros"
self
.
mode
=
"bilinear"
support_types
=
get_xpu_op_support_types
(
'grid_sampler'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestGridSamplerOP
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录