Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0279486b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0279486b
编写于
3月 24, 2021
作者:
P
pangyoki
提交者:
GitHub
3月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【NPU】Support npu kernel for update_loss_scaling op (#31830)
* add update_loss_scaling_npu NPU kernel * change TensorFromVec to Memset
上级
b2407af6
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
487 addition
and
0 deletion
+487
-0
paddle/fluid/operators/amp/update_loss_scaling_op_npu.cc
paddle/fluid/operators/amp/update_loss_scaling_op_npu.cc
+219
-0
python/paddle/fluid/tests/unittests/npu/test_update_loss_scaling_op_npu.py
...id/tests/unittests/npu/test_update_loss_scaling_op_npu.py
+268
-0
未找到文件。
paddle/fluid/operators/amp/update_loss_scaling_op_npu.cc
0 → 100644
浏览文件 @
0279486b
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/amp/update_loss_scaling_op.h"
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
void
Update
(
const
platform
::
NPUDeviceContext
&
ctx
,
const
std
::
vector
<
bool
>
found_inf_vec
,
const
Tensor
*
pre_loss_scaling_tensor
,
const
Tensor
*
good_in_tensor
,
const
Tensor
*
bad_in_tensor
,
const
int
incr_every_n_steps
,
const
int
decr_every_n_nan_or_inf
,
const
float
incr_ratio
,
const
float
decr_ratio
,
Tensor
*
updated_loss_scaling_tensor
,
Tensor
*
good_out_tensor
,
Tensor
*
bad_out_tensor
)
{
auto
place
=
ctx
.
GetPlace
();
auto
stream
=
ctx
.
stream
();
if
(
found_inf_vec
[
0
])
{
// good_out_data = 0
auto
g
=
good_out_tensor
->
mutable_data
<
int
>
(
place
);
platform
::
NPUMemsetAsync
(
static_cast
<
void
*>
(
g
),
0
,
good_out_tensor
->
numel
()
*
sizeof
(
int
),
stream
);
// bad_out_data = bad_in_data + 1
Tensor
factor_tensor
(
bad_out_tensor
->
type
());
factor_tensor
.
mutable_data
<
int
>
({
1
},
place
);
TensorFromVector
(
std
::
vector
<
int
>
{
1
},
ctx
,
&
factor_tensor
);
auto
runner_p2
=
NpuOpRunner
(
"Add"
,
{
*
bad_in_tensor
,
factor_tensor
},
{
*
bad_out_tensor
},
{});
runner_p2
.
Run
(
stream
);
std
::
vector
<
int
>
bad_out_data
;
TensorToVector
(
*
bad_out_tensor
,
ctx
,
&
bad_out_data
);
if
(
bad_out_data
[
0
]
==
decr_every_n_nan_or_inf
)
{
auto
runner_p3
=
NpuOpRunner
(
"Power"
,
{
*
pre_loss_scaling_tensor
},
{
*
updated_loss_scaling_tensor
},
{{
"power"
,
static_cast
<
float
>
(
1
)},
{
"scale"
,
decr_ratio
},
{
"shift"
,
static_cast
<
float
>
(
0
)}});
runner_p3
.
Run
(
stream
);
std
::
vector
<
T
>
new_loss_scaling
;
TensorToVector
(
*
updated_loss_scaling_tensor
,
ctx
,
&
new_loss_scaling
);
if
(
new_loss_scaling
[
0
]
<
static_cast
<
T
>
(
1
))
{
// updated_loss_scaling_data = 1
auto
runner_p4
=
NpuOpRunner
(
"Power"
,
{
*
pre_loss_scaling_tensor
},
{
*
updated_loss_scaling_tensor
},
{{
"power"
,
static_cast
<
float
>
(
1
)},
{
"scale"
,
static_cast
<
float
>
(
0
)},
{
"shift"
,
static_cast
<
float
>
(
1
)}});
runner_p4
.
Run
(
stream
);
}
// bad_out_data = 0
auto
b
=
bad_out_tensor
->
mutable_data
<
int
>
(
place
);
platform
::
NPUMemsetAsync
(
static_cast
<
void
*>
(
b
),
0
,
bad_out_tensor
->
numel
()
*
sizeof
(
int
),
stream
);
}
}
else
{
// bad_out_data = 0
auto
b
=
bad_out_tensor
->
mutable_data
<
int
>
(
place
);
platform
::
NPUMemsetAsync
(
static_cast
<
void
*>
(
b
),
0
,
bad_out_tensor
->
numel
()
*
sizeof
(
int
),
stream
);
// good_out_data = good_in_data + 1
Tensor
factor_tensor
(
good_out_tensor
->
type
());
factor_tensor
.
mutable_data
<
int
>
({
1
},
place
);
TensorFromVector
(
std
::
vector
<
int
>
{
1
},
ctx
,
&
factor_tensor
);
auto
runner_p2
=
NpuOpRunner
(
"Add"
,
{
*
good_in_tensor
,
factor_tensor
},
{
*
good_out_tensor
},
{});
runner_p2
.
Run
(
stream
);
std
::
vector
<
int
>
good_out_data
;
TensorToVector
(
*
good_out_tensor
,
ctx
,
&
good_out_data
);
if
(
good_out_data
[
0
]
==
incr_every_n_steps
)
{
auto
runner_p3
=
NpuOpRunner
(
"Power"
,
{
*
pre_loss_scaling_tensor
},
{
*
updated_loss_scaling_tensor
},
{{
"power"
,
static_cast
<
float
>
(
1
)},
{
"scale"
,
incr_ratio
},
{
"shift"
,
static_cast
<
float
>
(
0
)}});
runner_p3
.
Run
(
stream
);
std
::
vector
<
T
>
new_loss_scaling
;
TensorToVector
(
*
updated_loss_scaling_tensor
,
ctx
,
&
new_loss_scaling
);
if
(
!
std
::
isfinite
(
new_loss_scaling
[
0
]))
{
// updated_loss_scaling_data = pre_loss_scaling_data
auto
runner_p4
=
NpuOpRunner
(
"Power"
,
{
*
pre_loss_scaling_tensor
},
{
*
updated_loss_scaling_tensor
},
{{
"power"
,
static_cast
<
float
>
(
1
)},
{
"scale"
,
static_cast
<
float
>
(
1
)},
{
"shift"
,
static_cast
<
float
>
(
0
)}});
runner_p4
.
Run
(
stream
);
}
// good_out_data = 0
auto
g
=
good_out_tensor
->
mutable_data
<
int
>
(
place
);
platform
::
NPUMemsetAsync
(
static_cast
<
void
*>
(
g
),
0
,
good_out_tensor
->
numel
()
*
sizeof
(
int
),
stream
);
}
}
}
template
<
typename
T
>
class
UpdateLossScalingFunctor
<
platform
::
NPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
NPUDeviceContext
&
dev_ctx
,
const
std
::
vector
<
bool
>
found_inf_vec
,
const
Tensor
*
pre_loss_scaling_tensor
,
const
Tensor
*
good_in_tensor
,
const
Tensor
*
bad_in_tensor
,
const
int
incr_every_n_steps
,
const
int
decr_every_n_nan_or_inf
,
const
float
incr_ratio
,
const
float
decr_ratio
,
Tensor
*
updated_loss_scaling_tensor
,
Tensor
*
good_out_tensor
,
Tensor
*
bad_out_tensor
)
const
{
Update
<
T
>
(
dev_ctx
,
found_inf_vec
,
pre_loss_scaling_tensor
,
good_in_tensor
,
bad_in_tensor
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
updated_loss_scaling_tensor
,
good_out_tensor
,
bad_out_tensor
);
}
};
template
<
typename
T
>
class
LazyZerosNPU
{
public:
void
operator
()(
const
platform
::
NPUDeviceContext
&
dev_ctx
,
const
std
::
vector
<
bool
>
found_inf_vec
,
const
std
::
vector
<
const
framework
::
Tensor
*>&
xs
,
const
std
::
vector
<
framework
::
Tensor
*>&
outs
)
const
{
for
(
size_t
i
=
0
;
i
<
xs
.
size
();
++
i
)
{
auto
*
out
=
outs
[
i
];
if
(
found_inf_vec
[
0
])
{
VLOG
(
1
)
<<
"-- UpdateLossScaling: Find infinite grads. --"
;
auto
place
=
dev_ctx
.
GetPlace
();
auto
stream
=
dev_ctx
.
stream
();
auto
g
=
out
->
mutable_data
<
int
>
(
place
);
platform
::
NPUMemsetAsync
(
static_cast
<
void
*>
(
g
),
0
,
out
->
numel
()
*
sizeof
(
int
),
stream
);
}
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
UpdateLossScalingNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
MPDType
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
const
auto
xs
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Out"
);
const
auto
*
found_inf
=
ctx
.
Input
<
Tensor
>
(
"FoundInfinite"
);
PADDLE_ENFORCE_EQ
(
found_inf
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"FoundInfinite must has only one element."
));
std
::
vector
<
bool
>
found_inf_vec
;
TensorToVector
(
*
found_inf
,
ctx
.
device_context
(),
&
found_inf_vec
);
LazyZerosNPU
<
T
>
{}(
dev_ctx
,
found_inf_vec
,
xs
,
outs
);
const
bool
stop_update
=
ctx
.
Attr
<
bool
>
(
"stop_update"
);
if
(
stop_update
)
{
return
;
}
const
auto
*
pre_loss_scaling
=
ctx
.
Input
<
Tensor
>
(
"PrevLossScaling"
);
const
auto
*
good_in
=
ctx
.
Input
<
Tensor
>
(
"InGoodSteps"
);
const
auto
*
bad_in
=
ctx
.
Input
<
Tensor
>
(
"InBadSteps"
);
auto
*
updated_loss_scaling
=
ctx
.
Output
<
Tensor
>
(
"LossScaling"
);
auto
*
good_out
=
ctx
.
Output
<
Tensor
>
(
"OutGoodSteps"
);
auto
*
bad_out
=
ctx
.
Output
<
Tensor
>
(
"OutBadSteps"
);
updated_loss_scaling
->
mutable_data
<
MPDType
>
(
dev_ctx
.
GetPlace
());
good_out
->
mutable_data
<
int
>
(
dev_ctx
.
GetPlace
());
bad_out
->
mutable_data
<
int
>
(
dev_ctx
.
GetPlace
());
const
int
incr_every_n_steps
=
ctx
.
Attr
<
int
>
(
"incr_every_n_steps"
);
const
int
decr_every_n_nan_or_inf
=
ctx
.
Attr
<
int
>
(
"decr_every_n_nan_or_inf"
);
const
float
incr_ratio
=
ctx
.
Attr
<
float
>
(
"incr_ratio"
);
const
float
decr_ratio
=
ctx
.
Attr
<
float
>
(
"decr_ratio"
);
UpdateLossScalingFunctor
<
DeviceContext
,
MPDType
>
{}(
dev_ctx
,
found_inf_vec
,
pre_loss_scaling
,
good_in
,
bad_in
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
updated_loss_scaling
,
good_out
,
bad_out
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
update_loss_scaling
,
ops
::
UpdateLossScalingNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
UpdateLossScalingNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
double
>
);
python/paddle/fluid/tests/unittests/npu/test_update_loss_scaling_op_npu.py
0 → 100644
浏览文件 @
0279486b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.contrib.mixed_precision.amp_nn
as
amp_nn
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestUpdateLossScalingOp
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"update_loss_scaling"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init
()
found_inf
=
np
.
array
([
False
],
dtype
=
np
.
bool
)
x
=
np
.
random
.
random
((
1024
,
1024
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
[(
'x0'
,
x
)],
'FoundInfinite'
:
found_inf
,
'PrevLossScaling'
:
self
.
prev_loss_scaling
,
'InGoodSteps'
:
self
.
num_good_steps
,
'InBadSteps'
:
self
.
num_bad_steps
}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
x
)],
'LossScaling'
:
self
.
prev_loss_scaling
*
self
.
incr_ratio
,
'OutGoodSteps'
:
self
.
zero_steps
,
'OutBadSteps'
:
self
.
zero_steps
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
init
(
self
):
self
.
incr_ratio
=
2.0
self
.
decr_ratio
=
0.8
self
.
dtype
=
np
.
float32
self
.
prev_loss_scaling
=
np
.
array
([
2048
]).
astype
(
self
.
dtype
)
self
.
num_good_steps
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
self
.
num_bad_steps
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
self
.
zero_steps
=
np
.
array
([
0
],
dtype
=
np
.
int32
)
self
.
attrs
=
{
'incr_every_n_steps'
:
1000
,
'decr_every_n_nan_or_inf'
:
2
,
'incr_ratio'
:
self
.
incr_ratio
,
'decr_ratio'
:
self
.
decr_ratio
,
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
,
no_check_set
=
[
'Out'
])
class
TestUpdateLossScalingOpBad
(
TestUpdateLossScalingOp
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"update_loss_scaling"
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init
()
found_inf
=
np
.
array
([
True
],
dtype
=
np
.
bool
)
x
=
np
.
random
.
random
((
1024
,
1024
)).
astype
(
self
.
dtype
)
i
=
np
.
random
.
randint
(
0
,
1024
,
1
)
j
=
np
.
random
.
randint
(
0
,
1024
,
1
)
x
[
i
[
0
]][
j
[
0
]]
=
np
.
inf
self
.
inputs
=
{
'X'
:
[(
'x0'
,
x
)],
'FoundInfinite'
:
found_inf
,
'PrevLossScaling'
:
self
.
prev_loss_scaling
,
'InGoodSteps'
:
self
.
num_good_steps
,
'InBadSteps'
:
self
.
num_bad_steps
}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
np
.
zeros_like
(
x
))],
'LossScaling'
:
self
.
prev_loss_scaling
*
self
.
decr_ratio
,
'OutGoodSteps'
:
self
.
zero_steps
,
'OutBadSteps'
:
self
.
zero_steps
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestUpdateLossScalingLayer
(
unittest
.
TestCase
):
def
loss_scaling_check
(
self
,
use_npu
=
True
,
scope
=
fluid
.
Scope
()):
a
=
fluid
.
data
(
name
=
"a"
,
shape
=
[
1024
,
1024
],
dtype
=
'float32'
)
b
=
fluid
.
data
(
name
=
"b"
,
shape
=
[
512
,
128
],
dtype
=
'float32'
)
x
=
[
a
,
b
]
found_inf
=
fluid
.
data
(
name
=
"found_inf"
,
shape
=
[
1
],
dtype
=
'bool'
)
prev_loss_scaling
=
fluid
.
data
(
name
=
"prev_loss_scaling"
,
shape
=
[
1
],
dtype
=
'float32'
)
num_good_steps
=
fluid
.
data
(
name
=
"num_good_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
num_bad_steps
=
fluid
.
data
(
name
=
"num_bad_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
a_v
=
np
.
random
.
random
([
1024
,
1024
]).
astype
(
'float32'
)
b_v
=
np
.
random
.
random
([
512
,
128
]).
astype
(
'float32'
)
found_inf_v
=
np
.
array
([
False
]).
astype
(
'bool'
)
prev_loss_scaling_v
=
np
.
array
([
2048
]).
astype
(
'float32'
)
num_good_steps_v
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
num_bad_steps_v
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
incr_every_n_steps
=
1000
decr_every_n_nan_or_inf
=
2
incr_ratio
=
2
decr_ratio
=
0.8
result
=
amp_nn
.
update_loss_scaling
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
name
=
"update_loss_scaling"
)
place
=
paddle
.
NPUPlace
(
0
)
if
use_npu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
fluid
.
default_startup_program
())
result_v
=
exe
.
run
(
feed
=
{
'a'
:
a_v
,
'b'
:
b_v
,
'found_inf'
:
found_inf_v
,
'prev_loss_scaling'
:
prev_loss_scaling_v
,
'num_good_steps'
:
num_good_steps_v
,
'num_bad_steps'
:
num_bad_steps_v
},
fetch_list
=
[
result
,
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
])
assert
np
.
array_equal
(
result_v
[
0
],
a_v
)
assert
np
.
array_equal
(
result_v
[
1
],
b_v
)
assert
np
.
array_equal
(
result_v
[
0
],
result_v
[
2
])
assert
np
.
array_equal
(
result_v
[
1
],
result_v
[
3
])
assert
np
.
array_equal
(
result_v
[
4
],
found_inf_v
)
assert
np
.
array_equal
(
result_v
[
5
],
prev_loss_scaling_v
*
incr_ratio
)
assert
np
.
array_equal
(
result_v
[
6
],
np
.
zeros_like
(
num_good_steps_v
))
assert
np
.
array_equal
(
result_v
[
7
],
np
.
zeros_like
(
num_bad_steps_v
))
def
loss_scaling_check_inf
(
self
,
use_npu
=
True
,
scope
=
fluid
.
Scope
()):
a
=
fluid
.
data
(
name
=
"a"
,
shape
=
[
1024
,
1024
],
dtype
=
'float32'
)
b
=
fluid
.
data
(
name
=
"b"
,
shape
=
[
512
,
128
],
dtype
=
'float32'
)
x
=
[
a
,
b
]
found_inf
=
fluid
.
data
(
name
=
"found_inf"
,
shape
=
[
1
],
dtype
=
'bool'
)
prev_loss_scaling
=
fluid
.
data
(
name
=
"prev_loss_scaling"
,
shape
=
[
1
],
dtype
=
'float32'
)
num_good_steps
=
fluid
.
data
(
name
=
"num_good_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
num_bad_steps
=
fluid
.
data
(
name
=
"num_bad_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
a_v
=
np
.
random
.
random
([
1024
,
1024
]).
astype
(
'float32'
)
b_v
=
np
.
random
.
random
([
512
,
128
]).
astype
(
'float32'
)
i
=
np
.
random
.
randint
(
0
,
1024
,
1
)
j
=
np
.
random
.
randint
(
0
,
1024
,
1
)
a_v
[
i
[
0
]][
j
[
0
]]
=
np
.
inf
found_inf_v
=
np
.
array
([
True
]).
astype
(
'bool'
)
prev_loss_scaling_v
=
np
.
array
([
2048
]).
astype
(
'float32'
)
num_good_steps_v
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
num_bad_steps_v
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
incr_every_n_steps
=
1000
decr_every_n_nan_or_inf
=
2
incr_ratio
=
2
decr_ratio
=
0.8
result
=
amp_nn
.
update_loss_scaling
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
name
=
"update_loss_scaling"
)
place
=
paddle
.
NPUPlace
(
0
)
if
use_npu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
fluid
.
default_startup_program
())
result_v
=
exe
.
run
(
feed
=
{
'a'
:
a_v
,
'b'
:
b_v
,
'found_inf'
:
found_inf_v
,
'prev_loss_scaling'
:
prev_loss_scaling_v
,
'num_good_steps'
:
num_good_steps_v
,
'num_bad_steps'
:
num_bad_steps_v
},
fetch_list
=
[
result
,
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
])
assert
np
.
array_equal
(
result_v
[
0
],
np
.
zeros_like
(
a_v
))
assert
np
.
array_equal
(
result_v
[
1
],
np
.
zeros_like
(
b_v
))
assert
np
.
array_equal
(
result_v
[
2
],
np
.
zeros_like
(
a_v
))
assert
np
.
array_equal
(
result_v
[
3
],
np
.
zeros_like
(
b_v
))
assert
np
.
array_equal
(
result_v
[
4
],
found_inf_v
)
assert
np
.
array_equal
(
result_v
[
5
],
prev_loss_scaling_v
*
decr_ratio
)
assert
np
.
array_equal
(
result_v
[
6
],
np
.
zeros_like
(
num_good_steps_v
))
assert
np
.
array_equal
(
result_v
[
7
],
np
.
zeros_like
(
num_bad_steps_v
))
def
test_loss_scaling_cpu
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check
(
use_npu
=
False
)
def
test_loss_scaling_cpu_inf
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check_inf
(
use_npu
=
False
)
def
test_loss_scaling_npu
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check
(
use_npu
=
True
)
def
test_loss_scaling_npu_inf
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check_inf
(
use_npu
=
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录