Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
020e2431
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
020e2431
编写于
1月 13, 2021
作者:
S
ShenLiang
提交者:
GitHub
1月 13, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support unused parameters in dynamic graph distributed (#30224) (#30374)
上级
46a73e64
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
483 addition
and
84 deletion
+483
-84
paddle/fluid/imperative/reducer.cc
paddle/fluid/imperative/reducer.cc
+215
-63
paddle/fluid/imperative/reducer.h
paddle/fluid/imperative/reducer.h
+26
-7
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+11
-11
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+19
-3
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/parallel_dygraph_sparse_embedding_fp64.py
...tests/unittests/parallel_dygraph_sparse_embedding_fp64.py
+8
-0
python/paddle/fluid/tests/unittests/parallel_dygraph_unused_variables.py
...luid/tests/unittests/parallel_dygraph_unused_variables.py
+133
-0
python/paddle/fluid/tests/unittests/test_parallel_dygraph_unused_variables.py
...tests/unittests/test_parallel_dygraph_unused_variables.py
+68
-0
未找到文件。
paddle/fluid/imperative/reducer.cc
浏览文件 @
020e2431
...
@@ -22,6 +22,11 @@ std::shared_ptr<Reducer> Reducer::s_instance_ = NULL;
...
@@ -22,6 +22,11 @@ std::shared_ptr<Reducer> Reducer::s_instance_ = NULL;
// context is used to select the stream for concat
// context is used to select the stream for concat
void
Group
::
ConcatTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
void
Group
::
ConcatTensors
(
const
platform
::
CUDADeviceContext
&
context
)
{
VLOG
(
3
)
<<
"Before concat, set output tensor size is "
<<
all_length_
;
auto
tensor
=
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
({
all_length_
}))
.
mutable_data
(
context
.
GetPlace
(),
dtype_
);
switch
(
dtype_
)
{
switch
(
dtype_
)
{
case
framework
::
proto
::
VarType
::
FP16
:
case
framework
::
proto
::
VarType
::
FP16
:
ConcatTensorsForAllReduce
<
platform
::
float16
>
(
context
,
dense_tensors_
,
ConcatTensorsForAllReduce
<
platform
::
float16
>
(
context
,
dense_tensors_
,
...
@@ -88,23 +93,27 @@ Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
...
@@ -88,23 +93,27 @@ Reducer::Reducer(const std::vector<std::shared_ptr<imperative::VarBase>> &vars,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>
&
group_size_limits
)
const
std
::
vector
<
size_t
>
&
group_size_limits
,
bool
find_unused_vars
)
:
vars_
(
vars
),
:
vars_
(
vars
),
group_indices_
(
group_indices
),
group_indices_
(
group_indices
),
is_sparse_gradient_
(
is_sparse_gradient
),
is_sparse_gradient_
(
is_sparse_gradient
),
parallel_ctx_
(
parallel_ctx
),
parallel_ctx_
(
parallel_ctx
),
group_size_limits_
(
group_size_limits
)
{
group_size_limits_
(
group_size_limits
),
find_unused_vars_
(
find_unused_vars
)
{
VLOG
(
3
)
<<
"Start construct the Reducer ..."
;
VLOG
(
3
)
<<
"Start construct the Reducer ..."
;
nrings_
=
parallel_ctx
->
GetNRings
();
nrings_
=
parallel_ctx
->
GetNRings
();
// initialize groups
// initialize groups
InitializeGroups
(
group_indices
);
InitializeGroups
(
group_indices
);
for
(
size_t
global_var_index
=
0
;
global_var_index
<
vars_
.
size
();
for
(
size_t
global_var_index
=
0
;
global_var_index
<
vars_
.
size
();
++
global_var_index
)
{
++
global_var_index
)
{
vars_
[
global_var_index
]
->
SharedVar
()
->
AddGradVarLeafBackwardHook
(
auto
var
=
vars_
[
global_var_index
];
var
->
SharedVar
()
->
AddGradVarLeafBackwardHook
(
std
::
unique_ptr
<
LambdaGradAccumulatorPostHook
>
(
std
::
unique_ptr
<
LambdaGradAccumulatorPostHook
>
(
new
LambdaGradAccumulatorPostHook
([
=
](
VariableWrapper
*
grad
)
{
new
LambdaGradAccumulatorPostHook
([
=
](
VariableWrapper
*
grad
)
{
this
->
AddDistHook
(
g
rad
,
g
lobal_var_index
);
this
->
AddDistHook
(
global_var_index
);
})));
})));
var_index_map_
[
var
->
GradVarBase
()
->
SharedVar
().
get
()]
=
global_var_index
;
}
}
// create streams
// create streams
compute_stream_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
compute_stream_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
...
@@ -169,8 +178,6 @@ void Reducer::InitializeDenseGroups(
...
@@ -169,8 +178,6 @@ void Reducer::InitializeDenseGroups(
all_length
+=
size
;
all_length
+=
size
;
p_group
->
length_
.
push_back
(
size
);
p_group
->
length_
.
push_back
(
size
);
// for concat operator
p_group
->
dense_tensors_
.
push_back
(
framework
::
Tensor
());
// check the dtype and place, it must be same.
// check the dtype and place, it must be same.
auto
dtype
=
var
->
DataType
();
auto
dtype
=
var
->
DataType
();
...
@@ -193,7 +200,6 @@ void Reducer::InitializeDenseGroups(
...
@@ -193,7 +200,6 @@ void Reducer::InitializeDenseGroups(
place_
=
place
;
place_
=
place
;
}
}
}
}
p_group
->
all_length_
=
all_length
;
}
}
// Each parameter will be initialized according to the group information.
// Each parameter will be initialized according to the group information.
...
@@ -228,10 +234,6 @@ void Reducer::InitializeGroups(
...
@@ -228,10 +234,6 @@ void Reducer::InitializeGroups(
}
else
{
}
else
{
// process the dense gradient.
// process the dense gradient.
InitializeDenseGroups
(
variable_indices_
,
&
group
);
InitializeDenseGroups
(
variable_indices_
,
&
group
);
// Alloc the continuous space
auto
tensor
=
group
.
dense_contents_
.
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
framework
::
make_ddim
({
group
.
all_length_
}))
.
mutable_data
(
place_
,
group
.
dtype_
);
}
}
// map variables to this group by VariableLocator
// map variables to this group by VariableLocator
...
@@ -244,21 +246,144 @@ void Reducer::InitializeGroups(
...
@@ -244,21 +246,144 @@ void Reducer::InitializeGroups(
}
}
group
.
variable_indices_
=
std
::
move
(
variable_indices_
);
group
.
variable_indices_
=
std
::
move
(
variable_indices_
);
groups_
.
emplace_back
(
std
::
move
(
group
));
groups_
.
emplace_back
(
std
::
move
(
group
));
// Debug Message For Reducer
// Debug Message For Reducer
VLOG
(
3
)
<<
"The Group["
<<
group_index
<<
"]:"
;
VLOG
(
3
)
<<
"The Group["
<<
group_index
<<
"]:"
;
VLOG
(
3
)
<<
groups_
.
back
();
VLOG
(
3
)
<<
groups_
.
back
();
}
}
}
}
void
Reducer
::
PrepareDeps
(
const
std
::
unordered_set
<
GradOpNode
*>
&
init_nodes
)
{
PADDLE_ENFORCE_EQ
(
node_deps_
.
empty
(),
true
,
platform
::
errors
::
AlreadyExists
(
"Op deps must be initialized here"
));
std
::
queue
<
GradOpNode
*>
q
;
std
::
unordered_set
<
GradOpNode
*>
visited
;
for
(
auto
pos
=
init_nodes
.
begin
();
pos
!=
init_nodes
.
end
();
pos
++
)
{
q
.
push
(
*
pos
);
visited
.
insert
(
*
pos
);
}
while
(
!
q
.
empty
())
{
auto
*
cur_node
=
q
.
front
();
q
.
pop
();
for
(
auto
&
cur_op
:
*
cur_node
)
{
cur_op
.
EnforceHasInOut
();
}
const
auto
&
grad_pending_nodes
=
cur_node
->
GradPendingNodes
();
for
(
auto
&
grad_pending_node
:
grad_pending_nodes
)
{
PADDLE_ENFORCE_NOT_NULL
(
grad_pending_node
,
platform
::
errors
::
NotFound
(
"Grad pending node should not be null"
));
++
node_deps_
[
grad_pending_node
.
get
()];
if
(
visited
.
count
(
grad_pending_node
.
get
())
==
0
)
{
visited
.
insert
(
grad_pending_node
.
get
());
q
.
push
(
grad_pending_node
.
get
());
}
}
}
}
// After each batch is calculated, the counter of each group(group.pending_)
// After each batch is calculated, the counter of each group(group.pending_)
// and allreudce sequence counter(next_group_) will be cleaned up again.
// and allreudce sequence counter(next_group_) will be cleaned up again.
void
Reducer
::
PrepareForBackward
()
{
void
Reducer
::
PrepareForBackward
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
&
outputs
)
{
VLOG
(
3
)
<<
"start reseting count.."
;
VLOG
(
3
)
<<
"start reseting count.."
;
next_group_
=
0
;
next_group_
=
0
;
std
::
for_each
(
groups_
.
begin
(),
groups_
.
end
(),
[](
Group
&
group
)
{
std
::
for_each
(
groups_
.
begin
(),
groups_
.
end
(),
[](
Group
&
group
)
{
group
.
pending_
=
group
.
variable_indices_
.
size
();
group
.
pending_
=
group
.
variable_indices_
.
size
();
group
.
all_length_
=
0
;
group
.
dense_tensors_
.
clear
();
group
.
dense_tensors_
.
reserve
(
group
.
pending_
);
group
.
sparse_contents_
=
nullptr
;
});
});
PADDLE_ENFORCE_EQ
(
all_group_ready_
,
false
,
platform
::
errors
::
PreconditionNotMet
(
"Please note that all ``forward`` outputs derived from the module "
"parameters must participate in the calculation of losses and "
"subsequent gradient calculations. If not, the wrapper will hang, "
"waiting for autograd to generate gradients for these parameters. "
"you can use detach or stop_gradient to make the unused parameters "
"detached from the autograd graph."
));
// The first var to trigger the unused parameter
has_marked_unused_vars_
=
false
;
if
(
!
find_unused_vars_
)
{
return
;
}
// TODO(shenliang03) "find_unused_vars" interface will be exposed in the
// future to handle control flow to process unused parameters
find_unused_vars_
=
false
;
unused_vars_
.
clear
();
node_deps_
.
clear
();
std
::
queue
<
std
::
shared_ptr
<
GradOpNode
>>
q
;
std
::
unordered_set
<
VariableWrapper
*>
var_visited
;
std
::
unordered_set
<
GradOpNode
*>
init_nodes
;
for
(
const
auto
&
output
:
outputs
)
{
const
auto
&
grad_node
=
output
->
GradVarBase
()
->
GradNode
();
if
(
grad_node
==
nullptr
||
output
->
OverridedStopGradient
())
{
VLOG
(
3
)
<<
"Skip auto grad since there is no grad op or output is "
"stop_gradient=True: "
<<
output
->
Name
();
continue
;
}
else
{
init_nodes
.
insert
(
grad_node
.
get
());
var_visited
.
insert
(
output
->
SharedVar
().
get
());
q
.
push
(
grad_node
);
}
}
PrepareDeps
(
init_nodes
);
// Traverse the autograd graph starting at the specified output
while
(
!
q
.
empty
())
{
auto
cur_node
=
q
.
front
();
q
.
pop
();
for
(
const
auto
&
cur_op
:
*
cur_node
)
{
cur_op
.
EnforceHasInOut
();
auto
&
bwd_outs
=
cur_op
.
GetOutsMap
();
for
(
const
auto
&
pair
:
bwd_outs
)
{
if
(
!
pair
.
second
.
IsGrad
())
{
continue
;
}
for
(
auto
&
var
:
pair
.
second
)
{
if
(
!
var
||
var
->
OverridedStopGradient
())
{
continue
;
}
else
{
var_visited
.
insert
(
var
.
get
());
}
}
}
}
for
(
const
auto
&
grad_pending_node
:
cur_node
->
GradPendingNodes
())
{
PADDLE_ENFORCE_NOT_NULL
(
grad_pending_node
,
platform
::
errors
::
NotFound
(
"Grad pending node should not be nullptr"
));
auto
iter
=
node_deps_
.
find
(
grad_pending_node
.
get
());
if
(
iter
==
node_deps_
.
end
())
{
continue
;
}
if
(
--
(
iter
->
second
)
==
0
)
{
q
.
push
(
grad_pending_node
);
}
}
}
for
(
const
auto
&
it
:
var_index_map_
)
{
if
(
var_visited
.
count
(
it
.
first
)
==
0
)
{
unused_vars_
.
push_back
(
it
.
second
);
VLOG
(
3
)
<<
"Var["
<<
it
.
second
<<
"] ["
<<
it
.
first
->
Name
()
<<
"] is not used"
;
}
}
}
}
// Add hook function to each leaf node. When the gradient of a leaf node is
// Add hook function to each leaf node. When the gradient of a leaf node is
...
@@ -270,23 +395,50 @@ void Reducer::PrepareForBackward() {
...
@@ -270,23 +395,50 @@ void Reducer::PrepareForBackward() {
// counter is 0, it means that allreduce can be emitted, and
// counter is 0, it means that allreduce can be emitted, and
// concat + allreduce + split is emitted in turn according to next_group_.
// concat + allreduce + split is emitted in turn according to next_group_.
// 3, FinalizeBackward: after the end, synchronize each stream.
// 3, FinalizeBackward: after the end, synchronize each stream.
void
Reducer
::
AddDistHook
(
VariableWrapper
*
var_warpper
,
size_t
var_index
)
{
void
Reducer
::
AddDistHook
(
size_t
var_index
)
{
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
VLOG
(
3
)
<<
"Var["
<<
var_index
<<
"] ["
auto
group_index
=
var_locator
.
group_index
;
<<
vars_
[
var_index
]
->
GradVarBase
()
->
Name
()
auto
&
group
=
groups_
[
group_index
];
<<
"] arrived and triggered disthook"
;
if
(
!
has_marked_unused_vars_
)
{
has_marked_unused_vars_
=
true
;
for
(
auto
unused_index
:
unused_vars_
)
{
if
(
NeedRebuildGroup
())
{
rebuild_vars_
.
push_back
(
vars_
[
unused_index
]);
rebuild_var_indices_
.
push_back
(
unused_index
);
}
MarkVarReady
(
unused_index
,
false
);
}
}
if
(
!
has_rebuilt_group_
)
{
if
(
NeedRebuildGroup
()
)
{
rebuild_vars_
.
push_back
(
vars_
[
var_index
]);
rebuild_vars_
.
push_back
(
vars_
[
var_index
]);
rebuild_var_indices_
.
push_back
(
var_index
);
rebuild_var_indices_
.
push_back
(
var_index
);
}
}
MarkVarReady
(
var_index
,
true
);
}
void
Reducer
::
MarkVarReady
(
const
size_t
var_index
,
const
bool
is_used_var
)
{
all_group_ready_
=
true
;
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
auto
group_index
=
var_locator
.
group_index
;
auto
&
group
=
groups_
[
group_index
];
if
(
is_used_var
)
{
auto
var_warpper
=
vars_
[
var_index
]
->
GradVarBase
()
->
SharedVar
();
if
(
!
group
.
is_sparse_
)
{
if
(
!
group
.
is_sparse_
)
{
// Only dense_contents_ need memory copy
auto
grad
=
var_warpper
->
MutableVar
();
MarkDenseVarReady
(
var_index
,
var_warpper
);
auto
inside_group_index
=
var_locator
.
inside_group_index
;
auto
length
=
group
.
length_
[
inside_group_index
];
auto
tensor
=
grad
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
Tensor
tmp
;
tmp
.
ShareDataWith
(
*
tensor
).
Resize
({
static_cast
<
int64_t
>
(
length
)});
group
.
dense_tensors_
.
push_back
(
std
::
move
(
tmp
));
group
.
all_length_
+=
length
;
}
else
{
}
else
{
MarkSparseVarReady
(
var_index
,
var_warpper
);
group
.
sparse_contents_
=
var_warpper
->
MutableVar
();
}
}
}
if
(
--
group
.
pending_
==
0
)
{
if
(
--
group
.
pending_
==
0
)
{
// can start allreduce
// can start allreduce
MarkGroupReady
(
group_index
);
MarkGroupReady
(
group_index
);
...
@@ -297,27 +449,6 @@ void Reducer::AddDistHook(VariableWrapper *var_warpper, size_t var_index) {
...
@@ -297,27 +449,6 @@ void Reducer::AddDistHook(VariableWrapper *var_warpper, size_t var_index) {
}
}
}
}
void
Reducer
::
MarkDenseVarReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
)
{
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
auto
group_index
=
var_locator
.
group_index
;
auto
inside_group_index
=
var_locator
.
inside_group_index
;
auto
&
group
=
groups_
[
group_index
];
auto
length
=
group
.
length_
[
inside_group_index
];
auto
tensor
=
var_warpper
->
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
group
.
dense_tensors_
[
inside_group_index
].
ShareDataWith
(
*
tensor
).
Resize
(
{
static_cast
<
int64_t
>
(
length
)});
}
void
Reducer
::
MarkSparseVarReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
)
{
const
auto
&
var_locator
=
variable_locators_
[
var_index
];
auto
group_index
=
var_locator
.
group_index
;
auto
&
group
=
groups_
[
group_index
];
group
.
sparse_contents_
=
var_warpper
->
MutableVar
();
}
void
Reducer
::
MarkGroupReady
(
size_t
group_index
)
{
void
Reducer
::
MarkGroupReady
(
size_t
group_index
)
{
if
(
group_index
>
next_group_
)
{
if
(
group_index
>
next_group_
)
{
VLOG
(
3
)
<<
"It will adjust the order of group in next batch automatically"
;
VLOG
(
3
)
<<
"It will adjust the order of group in next batch automatically"
;
...
@@ -326,6 +457,7 @@ void Reducer::MarkGroupReady(size_t group_index) {
...
@@ -326,6 +457,7 @@ void Reducer::MarkGroupReady(size_t group_index) {
PADDLE_ENFORCE_CUDA_SUCCESS
(
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaEventRecord
(
group_events_
[
group_index
].
get
(),
compute_stream_
));
cudaEventRecord
(
group_events_
[
group_index
].
get
(),
compute_stream_
));
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaStreamWaitEvent
(
comm_streams_
[
i
],
group_events_
[
group_index
].
get
(),
0
));
comm_streams_
[
i
],
group_events_
[
group_index
].
get
(),
0
));
...
@@ -336,13 +468,19 @@ void Reducer::MarkGroupReady(size_t group_index) {
...
@@ -336,13 +468,19 @@ void Reducer::MarkGroupReady(size_t group_index) {
auto
&
group
=
groups_
[
next_group_
];
auto
&
group
=
groups_
[
next_group_
];
int
run_order
=
next_group_
%
nrings_
;
int
run_order
=
next_group_
%
nrings_
;
if
(
group
.
is_sparse_
)
{
if
(
group
.
is_sparse_
)
{
VLOG
(
3
)
<<
"sparse group ["
<<
next_group_
<<
"] start allreduce in ring["
if
(
group
.
sparse_contents_
!=
nullptr
)
{
<<
run_order
<<
"]"
;
VLOG
(
3
)
<<
"sparse group ["
<<
next_group_
<<
"] start allreduce in ring["
<<
run_order
<<
"]"
;
parallel_ctx_
->
AllReduceByStream
(
parallel_ctx_
->
AllReduceByStream
(
*
group
.
sparse_contents_
,
group
.
sparse_contents_
,
run_order
,
false
);
*
group
.
sparse_contents_
,
group
.
sparse_contents_
,
run_order
,
false
);
}
else
{
}
else
{
VLOG
(
3
)
<<
"dense group ["
<<
next_group_
<<
"] start allreduce in ring["
VLOG
(
3
)
<<
"The sparse group["
<<
next_group_
<<
run_order
<<
"]"
;
<<
"] has no var to allreduce"
;
}
}
else
{
if
(
!
group
.
dense_tensors_
.
empty
())
{
VLOG
(
3
)
<<
"dense group ["
<<
next_group_
<<
"] start allreduce in ring["
<<
run_order
<<
"]"
;
// Select common commstream to concat tensors
// Select common commstream to concat tensors
// group.dense_tensors ---> group.dense_contents_
// group.dense_tensors ---> group.dense_contents_
group
.
ConcatTensors
(
*
parallel_ctx_
->
GetDeviceContext
(
run_order
));
group
.
ConcatTensors
(
*
parallel_ctx_
->
GetDeviceContext
(
run_order
));
...
@@ -354,11 +492,24 @@ void Reducer::MarkGroupReady(size_t group_index) {
...
@@ -354,11 +492,24 @@ void Reducer::MarkGroupReady(size_t group_index) {
// Select common commstream to split tensors
// Select common commstream to split tensors
// group.dense_contents_ ---> group.dense_tensors
// group.dense_contents_ ---> group.dense_tensors
group
.
SplitTensors
(
*
parallel_ctx_
->
GetDeviceContext
(
run_order
));
group
.
SplitTensors
(
*
parallel_ctx_
->
GetDeviceContext
(
run_order
));
}
else
{
VLOG
(
3
)
<<
"The dense group["
<<
next_group_
<<
"] has no var to allreduce"
;
}
}
}
}
}
}
}
std
::
vector
<
std
::
vector
<
size_t
>>
Reducer
::
RebuildGruops
()
{
std
::
vector
<
std
::
vector
<
size_t
>>
Reducer
::
RebuildGruops
()
{
VLOG
(
3
)
<<
"The order of parameter arrival: "
<<
string
::
join_strings
(
rebuild_var_indices_
,
','
);
PADDLE_ENFORCE_EQ
(
rebuild_vars_
.
size
(),
vars_
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"Rebuild vars's number should be equal to original vars'number, "
"expect it to be %d, but got %d."
,
vars_
.
size
(),
rebuild_vars_
.
size
()));
std
::
reverse
(
rebuild_vars_
.
begin
(),
rebuild_vars_
.
end
());
std
::
reverse
(
rebuild_vars_
.
begin
(),
rebuild_vars_
.
end
());
std
::
reverse
(
rebuild_var_indices_
.
begin
(),
rebuild_var_indices_
.
end
());
std
::
reverse
(
rebuild_var_indices_
.
begin
(),
rebuild_var_indices_
.
end
());
auto
rebuild_group_indices
=
auto
rebuild_group_indices
=
...
@@ -372,6 +523,7 @@ std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
...
@@ -372,6 +523,7 @@ std::vector<std::vector<size_t>> Reducer::RebuildGruops() {
}
}
void
Reducer
::
FinalizeBackward
()
{
void
Reducer
::
FinalizeBackward
()
{
all_group_ready_
=
false
;
// Must prevent compute_stream_ starting until all comm streams have finished
// Must prevent compute_stream_ starting until all comm streams have finished
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
for
(
int
i
=
0
;
i
<
nrings_
;
++
i
)
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
PADDLE_ENFORCE_CUDA_SUCCESS
(
...
@@ -382,7 +534,7 @@ void Reducer::FinalizeBackward() {
...
@@ -382,7 +534,7 @@ void Reducer::FinalizeBackward() {
cudaStreamWaitEvent
(
compute_stream_
,
comm_events_
[
i
].
get
(),
0
));
cudaStreamWaitEvent
(
compute_stream_
,
comm_events_
[
i
].
get
(),
0
));
}
}
if
(
!
has_rebuilt_group_
)
{
if
(
NeedRebuildGroup
()
)
{
VLOG
(
3
)
<<
"Start rebuilding the groups"
;
VLOG
(
3
)
<<
"Start rebuilding the groups"
;
auto
rebuild_group_indices
=
RebuildGruops
();
auto
rebuild_group_indices
=
RebuildGruops
();
auto
rebuild_group_number
=
rebuild_group_indices
.
size
();
auto
rebuild_group_number
=
rebuild_group_indices
.
size
();
...
...
paddle/fluid/imperative/reducer.h
浏览文件 @
020e2431
...
@@ -18,14 +18,18 @@
...
@@ -18,14 +18,18 @@
#include <iostream>
#include <iostream>
#include <map>
#include <map>
#include <memory>
#include <memory>
#include <queue>
#include <string>
#include <string>
#include <unordered_map>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <utility>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/imperative/variable_wrapper.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/string/string_helper.h"
#if defined(PADDLE_WITH_NCCL)
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/imperative/all_reduce.h"
#include "paddle/fluid/imperative/all_reduce.h"
...
@@ -121,7 +125,7 @@ class Reducer {
...
@@ -121,7 +125,7 @@ class Reducer {
const
std
::
vector
<
std
::
vector
<
size_t
>>&
group_indices
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
group_indices
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>&
group_size_limits
);
const
std
::
vector
<
size_t
>&
group_size_limits
,
bool
find_unused_vars
);
virtual
~
Reducer
()
{}
virtual
~
Reducer
()
{}
...
@@ -130,13 +134,18 @@ class Reducer {
...
@@ -130,13 +134,18 @@ class Reducer {
void
InitializeDenseGroups
(
const
std
::
vector
<
size_t
>&
variable_indices_
,
void
InitializeDenseGroups
(
const
std
::
vector
<
size_t
>&
variable_indices_
,
Group
*
p_group
);
Group
*
p_group
);
void
Prepare
ForBackward
(
);
void
Prepare
Deps
(
const
std
::
unordered_set
<
GradOpNode
*>&
init_nodes
);
void
AddDistHook
(
VariableWrapper
*
var_warpper
,
size_t
var_index
);
void
PrepareForBackward
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>&
outputs
);
void
MarkDenseVarReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
);
void
AddDistHook
(
size_t
var_index
);
void
MarkSparseVarReady
(
size_t
var_index
,
VariableWrapper
*
var_warpper
);
// void MarkDenseVarReady(size_t var_index);
// void MarkSparseVarReady(size_t var_index);
void
MarkVarReady
(
const
size_t
var_index
,
const
bool
is_used_var
);
void
MarkGroupReady
(
size_t
group_index
);
void
MarkGroupReady
(
size_t
group_index
);
...
@@ -148,17 +157,19 @@ class Reducer {
...
@@ -148,17 +157,19 @@ class Reducer {
void
CreateGroupEvents
(
int
group_num
);
void
CreateGroupEvents
(
int
group_num
);
inline
bool
NeedRebuildGroup
()
{
return
!
has_rebuilt_group_
;
}
// Reducer Singleton
// Reducer Singleton
static
std
::
shared_ptr
<
Reducer
>
SetInstance
(
static
std
::
shared_ptr
<
Reducer
>
SetInstance
(
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>&
vars
,
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>&
vars
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
group_indices
,
const
std
::
vector
<
std
::
vector
<
size_t
>>&
group_indices
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
const
std
::
vector
<
bool
>&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>&
group_size_limits
)
{
const
std
::
vector
<
size_t
>&
group_size_limits
,
bool
find_unused_vars
)
{
if
(
NULL
==
s_instance_
)
{
if
(
NULL
==
s_instance_
)
{
s_instance_
.
reset
(
new
paddle
::
imperative
::
Reducer
(
s_instance_
.
reset
(
new
paddle
::
imperative
::
Reducer
(
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
,
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
,
group_size_limits
));
group_size_limits
,
find_unused_vars
));
}
}
return
s_instance_
;
return
s_instance_
;
}
}
...
@@ -194,6 +205,14 @@ class Reducer {
...
@@ -194,6 +205,14 @@ class Reducer {
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
rebuild_vars_
;
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
rebuild_vars_
;
std
::
vector
<
int64_t
>
rebuild_var_indices_
;
std
::
vector
<
int64_t
>
rebuild_var_indices_
;
const
std
::
vector
<
size_t
>
group_size_limits_
;
const
std
::
vector
<
size_t
>
group_size_limits_
;
// Following variables are to help unused vars
std
::
unordered_map
<
GradOpNode
*
,
size_t
>
node_deps_
;
std
::
unordered_map
<
VariableWrapper
*
,
size_t
>
var_index_map_
;
std
::
vector
<
size_t
>
unused_vars_
;
bool
has_marked_unused_vars_
{
false
};
bool
find_unused_vars_
{
false
};
bool
all_group_ready_
{
false
};
};
};
std
::
vector
<
std
::
vector
<
size_t
>>
AssignGroupBySize
(
std
::
vector
<
std
::
vector
<
size_t
>>
AssignGroupBySize
(
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
020e2431
...
@@ -1358,18 +1358,18 @@ void BindImperative(py::module *m_ptr) {
...
@@ -1358,18 +1358,18 @@ void BindImperative(py::module *m_ptr) {
py
::
class_
<
imperative
::
Reducer
,
std
::
shared_ptr
<
imperative
::
Reducer
>>
(
py
::
class_
<
imperative
::
Reducer
,
std
::
shared_ptr
<
imperative
::
Reducer
>>
(
m
,
"Reducer"
,
R"DOC()DOC"
)
m
,
"Reducer"
,
R"DOC()DOC"
)
.
def
(
py
::
init
(
.
def
(
py
::
init
(
[](
[](
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
&
vars
,
const
std
::
vector
<
std
::
shared_ptr
<
imperative
::
VarBase
>>
&
vars
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
group_indices
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
const
std
::
vector
<
bool
>
&
is_sparse_gradient
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>
parallel_ctx
,
const
std
::
vector
<
size_t
>
&
group_size_limit
s
)
{
const
std
::
vector
<
size_t
>
&
group_size_limits
,
bool
find_unused_var
s
)
{
return
imperative
::
Reducer
::
SetInstance
(
return
imperative
::
Reducer
::
SetInstance
(
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
,
vars
,
group_indices
,
is_sparse_gradient
,
parallel_ctx
,
group_size_limit
s
);
group_size_limits
,
find_unused_var
s
);
}))
}))
.
def
(
"prepare_for_backward"
,
&
imperative
::
Reducer
::
PrepareForBackward
,
.
def
(
"prepare_for_backward"
,
&
imperative
::
Reducer
::
PrepareForBackward
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
py
::
arg
(
"vars"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
m
.
def
(
"assign_group_by_size"
,
&
imperative
::
AssignGroupBySize
,
py
::
arg
(
"vars"
),
m
.
def
(
"assign_group_by_size"
,
&
imperative
::
AssignGroupBySize
,
py
::
arg
(
"vars"
),
py
::
arg
(
"is_sparse_gradient"
),
py
::
arg
(
"is_sparse_gradient"
),
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
020e2431
...
@@ -26,6 +26,7 @@ from paddle.fluid.dygraph import to_variable, no_grad
...
@@ -26,6 +26,7 @@ from paddle.fluid.dygraph import to_variable, no_grad
from
paddle.utils
import
deprecated
from
paddle.utils
import
deprecated
import
warnings
import
warnings
import
paddle
import
paddle
import
itertools
__all__
=
[
"prepare_context"
,
"ParallelEnv"
,
"DataParallel"
]
__all__
=
[
"prepare_context"
,
"ParallelEnv"
,
"DataParallel"
]
...
@@ -465,17 +466,32 @@ class DataParallel(layers.Layer):
...
@@ -465,17 +466,32 @@ class DataParallel(layers.Layer):
"ParallelContext must be initialized before. You should use init_parallel_env() before"
\
"ParallelContext must be initialized before. You should use init_parallel_env() before"
\
"constructing the DataParallel."
"constructing the DataParallel."
# TODO(shenliang03) "find_unused_vars" interface will be exposed in the future
# to handle control flow to process unused parameters
find_unused_vars
=
True
self
.
_reducer
=
core
.
Reducer
(
self
.
_reducer
=
core
.
Reducer
(
trainable_parameters
,
trainable_parameters
,
list
(
reversed
(
self
.
group_indices
)),
is_sparse_gradient
,
list
(
reversed
(
self
.
group_indices
)),
is_sparse_gradient
,
parallel_helper
.
__parallel_ctx__clz__
,
parallel_helper
.
__parallel_ctx__clz__
,
[
self
.
last_comm_buffer_size
,
self
.
comm_buffer_size
])
[
self
.
last_comm_buffer_size
,
self
.
comm_buffer_size
],
find_unused_vars
)
def
_find_varbase
(
self
,
obj
):
if
isinstance
(
obj
,
core
.
VarBase
):
return
[
obj
]
if
isinstance
(
obj
,
(
list
,
tuple
)):
return
itertools
.
chain
(
*
map
(
self
.
_find_varbase
,
obj
))
if
isinstance
(
obj
,
dict
):
return
itertools
.
chain
(
*
map
(
self
.
_find_varbase
,
obj
.
values
()))
return
[]
def
forward
(
self
,
*
inputs
,
**
kwargs
):
def
forward
(
self
,
*
inputs
,
**
kwargs
):
outputs
=
self
.
_layers
(
*
inputs
,
**
kwargs
)
if
self
.
_strategy
.
nranks
>
1
:
if
self
.
_strategy
.
nranks
>
1
:
self
.
_reducer
.
prepare_for_backward
()
self
.
_reducer
.
prepare_for_backward
(
list
(
self
.
_find_varbase
(
outputs
)))
return
self
.
_layers
(
*
inputs
,
**
kwargs
)
return
outputs
@
deprecated
(
@
deprecated
(
since
=
"2.0.0"
,
reason
=
"This method does not need to be called anymore."
)
since
=
"2.0.0"
,
reason
=
"This method does not need to be called anymore."
)
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
020e2431
...
@@ -18,6 +18,7 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_transformer)
...
@@ -18,6 +18,7 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_transformer)
list
(
APPEND DIST_TEST_OPS test_fleet_pipeline_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_fleet_pipeline_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_fleet_graph_execution_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_fleet_graph_execution_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_gen_nccl_id_op
)
list
(
APPEND DIST_TEST_OPS test_gen_nccl_id_op
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_unused_variables
)
set
(
MIXED_DIST_TEST_OPS
${
DIST_TEST_OPS
}
)
set
(
MIXED_DIST_TEST_OPS
${
DIST_TEST_OPS
}
)
#remove distribute unittests.
#remove distribute unittests.
list
(
APPEND MIXED_DIST_TEST_OPS test_dgc_op
)
list
(
APPEND MIXED_DIST_TEST_OPS test_dgc_op
)
...
@@ -155,6 +156,7 @@ if (NOT ${WITH_GPU})
...
@@ -155,6 +156,7 @@ if (NOT ${WITH_GPU})
LIST
(
REMOVE_ITEM TEST_OPS test_rank_attention_op
)
# TODO(shenliang03): rank_attention_op support CPU device in future
LIST
(
REMOVE_ITEM TEST_OPS test_rank_attention_op
)
# TODO(shenliang03): rank_attention_op support CPU device in future
LIST
(
REMOVE_ITEM TEST_OPS test_batch_fc_op
)
# TODO(shenliang03): batch_fc_op support CPU device in future
LIST
(
REMOVE_ITEM TEST_OPS test_batch_fc_op
)
# TODO(shenliang03): batch_fc_op support CPU device in future
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_mnist
)
# TODO(Yancey1989): parallel dygraph support CPU device in future
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_mnist
)
# TODO(Yancey1989): parallel dygraph support CPU device in future
list
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_unused_variables
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_se_resnext
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_se_resnext
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_sparse_embedding
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_sparse_embedding
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_sparse_embedding_over_height
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_sparse_embedding_over_height
)
...
@@ -815,6 +817,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL)
...
@@ -815,6 +817,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL)
if
(
${
NCCL_VERSION
}
VERSION_GREATER_EQUAL 2212
)
if
(
${
NCCL_VERSION
}
VERSION_GREATER_EQUAL 2212
)
set_tests_properties
(
test_parallel_dygraph_sparse_embedding PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_dygraph_sparse_embedding PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_dygraph_transformer PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_dygraph_transformer PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_dygraph_unused_variables PROPERTIES TIMEOUT 120
)
endif
()
endif
()
endif
()
endif
()
if
(
WITH_GPU AND NOT WIN32
)
if
(
WITH_GPU AND NOT WIN32
)
...
...
python/paddle/fluid/tests/unittests/parallel_dygraph_sparse_embedding_fp64.py
浏览文件 @
020e2431
...
@@ -55,10 +55,18 @@ class SimpleNet(Layer):
...
@@ -55,10 +55,18 @@ class SimpleNet(Layer):
dtype
=
dtype
,
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
tmp
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
forward
(
self
,
input
,
label
):
def
forward
(
self
,
input
,
label
):
x_emb
=
self
.
embedding
(
input
)
x_emb
=
self
.
embedding
(
input
)
fc
=
paddle
.
matmul
(
x_emb
,
self
.
softmax_weight
)
fc
=
paddle
.
matmul
(
x_emb
,
self
.
softmax_weight
)
# use detach to stop gradient
fc
=
fc
.
detach
()
fc
=
paddle
.
add
(
fc
,
self
.
softmax_bias
)
fc
=
paddle
.
add
(
fc
,
self
.
softmax_bias
)
projection
=
paddle
.
reshape
(
fc
,
shape
=
[
-
1
,
self
.
vocab_size
])
projection
=
paddle
.
reshape
(
fc
,
shape
=
[
-
1
,
self
.
vocab_size
])
loss
=
paddle
.
nn
.
functional
.
softmax_with_cross_entropy
(
loss
=
paddle
.
nn
.
functional
.
softmax_with_cross_entropy
(
...
...
python/paddle/fluid/tests/unittests/parallel_dygraph_unused_variables.py
0 → 100644
浏览文件 @
020e2431
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
paddle
from
test_dist_base
import
runtime_main
,
TestParallelDyGraphRunnerBase
from
paddle.nn
import
Layer
,
Embedding
class
SimpleNet
(
Layer
):
def
__init__
(
self
,
hidden_size
,
vocab_size
,
num_steps
=
20
,
init_scale
=
0.1
,
is_sparse
=
False
,
dtype
=
"float32"
):
super
(
SimpleNet
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
num_steps
=
num_steps
self
.
embedding
=
Embedding
(
self
.
vocab_size
,
self
.
hidden_size
,
sparse
=
True
,
weight_attr
=
paddle
.
ParamAttr
(
name
=
'embedding_param'
,
initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
init_scale
,
high
=
init_scale
)))
self
.
softmax_weight
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
vocab_size
],
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
# add tmp var
self
.
tmp
=
self
.
create_parameter
(
attr
=
paddle
.
ParamAttr
(),
shape
=
[
self
.
vocab_size
],
dtype
=
dtype
,
default_initializer
=
paddle
.
nn
.
initializer
.
Uniform
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
forward
(
self
,
input
,
label
):
x_emb
=
self
.
embedding
(
input
)
fc
=
paddle
.
matmul
(
x_emb
,
self
.
softmax_weight
)
# it use stop gradient to block gradient return
fc
.
stop_gradient
=
True
fc
=
paddle
.
add
(
fc
,
self
.
softmax_bias
)
projection
=
paddle
.
reshape
(
fc
,
shape
=
[
-
1
,
self
.
vocab_size
])
loss
=
paddle
.
nn
.
functional
.
softmax_with_cross_entropy
(
logits
=
projection
,
label
=
label
,
soft_label
=
False
)
loss
=
paddle
.
reshape
(
loss
,
shape
=
[
-
1
,
self
.
num_steps
])
loss
=
paddle
.
mean
(
loss
,
axis
=
[
0
])
loss
=
paddle
.
sum
(
loss
)
return
{
"loss"
:
loss
}
# global configs
batch_size
=
4
batch_num
=
200
hidden_size
=
10
vocab_size
=
1000
num_steps
=
3
init_scale
=
0.1
def
fake_sample_reader
():
def
__reader__
():
for
i
in
range
(
batch_num
):
x_data
=
np
.
arange
(
num_steps
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
1
+
num_steps
).
astype
(
'int64'
)
yield
x_data
,
y_data
return
__reader__
class
TestSparseEmbeddingUnusedVars
(
TestParallelDyGraphRunnerBase
):
def
get_model
(
self
):
model
=
SimpleNet
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_steps
=
num_steps
,
init_scale
=
init_scale
,
is_sparse
=
True
)
train_reader
=
paddle
.
batch
(
fake_sample_reader
(),
batch_size
=
batch_size
,
drop_last
=
True
)
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.001
,
parameters
=
model
.
parameters
())
return
model
,
train_reader
,
optimizer
def
run_one_loop
(
self
,
model
,
optimizer
,
batch
):
x_data
=
np
.
array
([
x
[
0
].
reshape
(
3
)
for
x
in
batch
]).
astype
(
'int64'
)
y_data
=
np
.
array
([
x
[
1
].
reshape
(
3
)
for
x
in
batch
]).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
x
=
paddle
.
to_tensor
(
x_data
)
y
=
paddle
.
to_tensor
(
y_data
)
dy_loss
=
model
(
x
,
y
)
return
dy_loss
[
"loss"
]
if
__name__
==
"__main__"
:
runtime_main
(
TestSparseEmbeddingUnusedVars
)
python/paddle/fluid/tests/unittests/test_parallel_dygraph_unused_variables.py
0 → 100644
浏览文件 @
020e2431
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
sys
import
unittest
import
paddle.fluid
as
fluid
from
test_dist_base
import
TestDistBase
from
spawn_runner_base
import
TestDistSpawnRunner
from
parallel_dygraph_unused_variables
import
TestSparseEmbeddingUnusedVars
flag_name
=
os
.
path
.
splitext
(
__file__
)[
0
]
class
TestParallelDygraphMnist
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_nccl2_mode
=
True
self
.
_dygraph
=
True
def
test_mnist
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"parallel_dygraph_unused_variables.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
log_name
=
flag_name
)
class
TestSparseEmbeddingUnusedVarsSpawn
(
TestDistSpawnRunner
):
def
test_mnist_with_spawn
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
()
and
sys
.
version_info
>=
(
3
,
4
):
self
.
check_dist_result_with_spawn
(
test_class
=
TestSparseEmbeddingUnusedVars
,
delta
=
1e-5
)
class
TestFleetDygraphMnist
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_nccl2_mode
=
True
self
.
_dygraph
=
True
self
.
_gpu_fleet_api
=
True
def
test_mnist
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"parallel_dygraph_unused_variables.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
log_name
=
flag_name
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录