Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
01b688c0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
01b688c0
编写于
3月 25, 2022
作者:
Z
Zhang Ting
提交者:
GitHub
3月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implement a common AlgorithmsCache for kernel auto-tune (#40793)
上级
54632b5c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
169 addition
and
0 deletion
+169
-0
paddle/phi/kernels/autotune/CMakeLists.txt
paddle/phi/kernels/autotune/CMakeLists.txt
+2
-0
paddle/phi/kernels/autotune/cache.h
paddle/phi/kernels/autotune/cache.h
+122
-0
paddle/phi/kernels/autotune/cache_test.cc
paddle/phi/kernels/autotune/cache_test.cc
+45
-0
未找到文件。
paddle/phi/kernels/autotune/CMakeLists.txt
浏览文件 @
01b688c0
...
...
@@ -3,3 +3,5 @@ if (WITH_GPU)
elseif
(
WITH_ROCM
)
hip_test
(
gpu_timer_test SRCS gpu_timer_test.cu DEPS gtest
)
endif
()
cc_test
(
cache_test SRCS cache_test.cc DEPS gtest
)
paddle/phi/kernels/autotune/cache.h
0 → 100644
浏览文件 @
01b688c0
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <mutex>
#include <unordered_map>
#include <vector>
#include "glog/logging.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
inline
void
HashCombine
(
std
::
size_t
*
seed
)
{}
// combine hash value
// https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
template
<
typename
T
,
typename
...
Rest
>
inline
void
HashCombine
(
std
::
size_t
*
seed
,
const
T
&
v
,
Rest
...
rest
)
{
std
::
hash
<
T
>
hasher
;
*
seed
^=
hasher
(
v
)
+
0x9e3779b9
+
(
*
seed
<<
6
)
+
(
*
seed
>>
2
);
HashCombine
(
seed
,
rest
...);
}
// custom specialization of std::hash can be injected in namespace std
// ref: https://en.cppreference.com/w/cpp/utility/hash
namespace
std
{
template
<
typename
T
>
struct
hash
<
std
::
vector
<
T
>>
{
std
::
size_t
operator
()(
std
::
vector
<
T
>
const
&
vec
)
const
noexcept
{
std
::
size_t
seed
=
0
;
for
(
auto
val
:
vec
)
{
HashCombine
(
&
seed
,
val
);
}
return
seed
;
}
};
}
// namespace std
namespace
phi
{
namespace
autotune
{
template
<
typename
AlgorithmT
>
class
AlgorithmsCache
{
public:
AlgorithmsCache
()
{
hash_
.
clear
();
}
template
<
typename
...
Args
>
size_t
GetKey
(
Args
&&
...
args
)
{
size_t
seed
=
0
;
HashCombine
(
&
seed
,
std
::
forward
<
Args
>
(
args
)...);
return
seed
;
}
AlgorithmT
Get
(
size_t
key
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
cache_mutex_
);
PADDLE_ENFORCE_NE
(
hash_
.
find
(
key
),
hash_
.
end
(),
phi
::
errors
::
PreconditionNotMet
(
"The key does not exist."
));
return
hash_
[
key
];
}
bool
Find
(
size_t
key
)
{
bool
ret
=
false
;
std
::
lock_guard
<
std
::
mutex
>
lock
(
cache_mutex_
);
if
(
hash_
.
find
(
key
)
!=
hash_
.
end
())
{
cache_hits_
++
;
ret
=
true
;
}
else
{
cache_misses_
++
;
}
return
ret
;
}
void
Set
(
size_t
key
,
AlgorithmT
algo
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
cache_mutex_
);
hash_
[
key
]
=
algo
;
}
float
CacheHitRate
()
const
{
int64_t
num_accesses
=
cache_hits_
+
cache_misses_
;
float
cache_hit_rate
=
static_cast
<
float
>
(
cache_hits_
)
/
static_cast
<
float
>
(
num_accesses
);
return
cache_hit_rate
;
}
// Define the cache key of operator
size_t
ConvKey
(
const
std
::
vector
<
int64_t
>&
x_dims
,
const
std
::
vector
<
int64_t
>&
w_dims
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
phi
::
DataType
dtype
)
{
return
GetKey
(
x_dims
,
w_dims
,
strides
,
paddings
,
dilations
,
static_cast
<
int64_t
>
(
dtype
));
}
private:
std
::
unordered_map
<
size_t
,
AlgorithmT
>
hash_
;
std
::
mutex
cache_mutex_
;
int64_t
cache_hits_
=
0
;
int64_t
cache_misses_
=
0
;
};
}
// namespace autotune
}
// namespace phi
paddle/phi/kernels/autotune/cache_test.cc
0 → 100644
浏览文件 @
01b688c0
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/autotune/cache.h"
#include <gtest/gtest.h>
#include <cmath>
#include <functional>
#include "glog/logging.h"
void
Algo
()
{
VLOG
(
3
)
<<
"algo test"
;
}
TEST
(
AlgosCache
,
AlgosCache
)
{
phi
::
autotune
::
AlgorithmsCache
<
std
::
function
<
void
()
>>
cache
;
std
::
vector
<
int64_t
>
x_shape
=
{
4
,
224
,
224
,
3
};
std
::
vector
<
int64_t
>
w_shape
=
{
32
,
3
,
3
,
3
};
std
::
vector
<
int
>
paddings
=
{
0
,
0
};
std
::
vector
<
int
>
strides
=
{
2
,
2
};
std
::
vector
<
int
>
dilations
=
{
1
,
1
};
phi
::
DataType
dtype
=
paddle
::
experimental
::
CppTypeToDataType
<
float
>::
Type
();
auto
key
=
cache
.
ConvKey
(
x_shape
,
w_shape
,
paddings
,
strides
,
dilations
,
dtype
);
EXPECT_EQ
(
cache
.
Find
(
key
),
false
);
cache
.
Set
(
key
,
Algo
);
EXPECT_EQ
(
cache
.
Find
(
key
),
true
);
auto
algo
=
cache
.
Get
(
key
);
algo
();
x_shape
=
{
4
,
128
,
128
,
3
};
key
=
cache
.
ConvKey
(
x_shape
,
w_shape
,
paddings
,
strides
,
dilations
,
dtype
);
EXPECT_EQ
(
cache
.
Find
(
key
),
false
);
float
cache_hit_rate
=
static_cast
<
float
>
(
1
)
/
static_cast
<
float
>
(
3
);
EXPECT_LT
(
std
::
abs
(
cache_hit_rate
-
cache
.
CacheHitRate
()),
1e-5
);
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录