Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0025e0d8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0025e0d8
编写于
10月 10, 2020
作者:
Z
zhupengyang
提交者:
GitHub
10月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine APIs: brelu, hardsigmoid, hardswish, maxout (#27658)
上级
5098891f
变更
10
展开全部
隐藏空白更改
内联
并排
Showing
10 changed file
with
685 addition
and
260 deletion
+685
-260
paddle/fluid/operators/maxout_op.cc
paddle/fluid/operators/maxout_op.cc
+12
-0
paddle/fluid/operators/maxout_op.h
paddle/fluid/operators/maxout_op.h
+7
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+22
-35
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+169
-88
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+0
-29
python/paddle/fluid/tests/unittests/test_maxout_op.py
python/paddle/fluid/tests/unittests/test_maxout_op.py
+94
-59
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+3
-0
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+2
-3
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+193
-20
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+183
-26
未找到文件。
paddle/fluid/operators/maxout_op.cc
浏览文件 @
0025e0d8
...
@@ -83,6 +83,18 @@ class MaxOutOp : public framework::OperatorWithKernel {
...
@@ -83,6 +83,18 @@ class MaxOutOp : public framework::OperatorWithKernel {
"Attr(groups) of Op(maxout) should be "
"Attr(groups) of Op(maxout) should be "
"larger than 1. But received %d."
,
"larger than 1. But received %d."
,
groups
));
groups
));
PADDLE_ENFORCE_EQ
(
axis
==
1
||
axis
==
-
1
||
axis
==
3
,
true
,
platform
::
errors
::
InvalidArgument
(
"axis only supported 1, -1 or 3, but recevied axis is: %d"
,
axis
));
PADDLE_ENFORCE_EQ
(
in_x_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"x's dims should be 4, but received x's dims is: %d"
,
in_x_dims
.
size
()));
if
(
axis
<
0
)
{
axis
+=
in_x_dims
.
size
();
}
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
in_x_dims
[
axis
]
%
groups
,
0
,
in_x_dims
[
axis
]
%
groups
,
0
,
platform
::
errors
::
InvalidArgument
(
platform
::
errors
::
InvalidArgument
(
...
...
paddle/fluid/operators/maxout_op.h
浏览文件 @
0025e0d8
...
@@ -31,6 +31,9 @@ class MaxOutKernel : public framework::OpKernel<T> {
...
@@ -31,6 +31,9 @@ class MaxOutKernel : public framework::OpKernel<T> {
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
int
groups
=
context
.
template
Attr
<
int
>(
"groups"
);
int
groups
=
context
.
template
Attr
<
int
>(
"groups"
);
int
axis
=
context
.
template
Attr
<
int
>(
"axis"
);
int
axis
=
context
.
template
Attr
<
int
>(
"axis"
);
if
(
axis
<
0
)
{
axis
+=
in_x
->
dims
().
size
();
}
math
::
MaxOutFunctor
<
DeviceContext
,
T
>
maxout_forward
;
math
::
MaxOutFunctor
<
DeviceContext
,
T
>
maxout_forward
;
maxout_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
out
,
maxout_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
out
,
...
@@ -49,6 +52,10 @@ class MaxOutGradKernel : public framework::OpKernel<T> {
...
@@ -49,6 +52,10 @@ class MaxOutGradKernel : public framework::OpKernel<T> {
Tensor
*
in_x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
Tensor
*
in_x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
groups
=
context
.
template
Attr
<
int
>(
"groups"
);
int
groups
=
context
.
template
Attr
<
int
>(
"groups"
);
int
axis
=
context
.
template
Attr
<
int
>(
"axis"
);
int
axis
=
context
.
template
Attr
<
int
>(
"axis"
);
if
(
axis
<
0
)
{
axis
+=
in_x
->
dims
().
size
();
}
auto
&
device_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
device_ctx
=
context
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
if
(
in_x_grad
)
{
if
(
in_x_grad
)
{
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
0025e0d8
...
@@ -9592,10 +9592,6 @@ def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
...
@@ -9592,10 +9592,6 @@ def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
@templatedoc()
@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
"""
"""
:alias_main: paddle.nn.functional.hard_sigmoid
:alias: paddle.nn.functional.hard_sigmoid,paddle.nn.functional.activation.hard_sigmoid
:old_api: paddle.fluid.layers.hard_sigmoid
${comment}
${comment}
Parameters:
Parameters:
x (${x_type}): ${x_comment}
x (${x_type}): ${x_comment}
...
@@ -9613,9 +9609,15 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
...
@@ -9613,9 +9609,15 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid as fluid
import paddle
paddle.enable_static()
data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
"""
"""
if in_dygraph_mode():
return core.ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
'hard_sigmoid')
'hard_sigmoid')
...
@@ -9802,10 +9804,6 @@ def prelu(x, mode, param_attr=None, name=None):
...
@@ -9802,10 +9804,6 @@ def prelu(x, mode, param_attr=None, name=None):
@templatedoc()
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
def brelu(x, t_min=0.0, t_max=24.0, name=None):
"""
"""
:alias_main: paddle.nn.functional.brelu
:alias: paddle.nn.functional.brelu,paddle.nn.functional.activation.brelu
:old_api: paddle.fluid.layers.brelu
${comment}
${comment}
Args:
Args:
x(${x_type}): ${x_comment}
x(${x_type}): ${x_comment}
...
@@ -9821,7 +9819,9 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None):
...
@@ -9821,7 +9819,9 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None):
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid as fluid
import paddle
import numpy as np
import numpy as np
paddle.enable_static()
input_brelu = np.array([[-1,6],[1,15.6]])
input_brelu = np.array([[-1,6],[1,15.6]])
with fluid.dygraph.guard():
with fluid.dygraph.guard():
...
@@ -9831,6 +9831,9 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None):
...
@@ -9831,6 +9831,9 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None):
#[[ 1. 6.]
#[[ 1. 6.]
#[ 1. 10.]]
#[ 1. 10.]]
"""
"""
if in_dygraph_mode():
return core.ops.brelu(x, 't_min', t_min, 't_max', t_max)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'brelu')
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'brelu')
helper = LayerHelper('brelu', **locals())
helper = LayerHelper('brelu', **locals())
...
@@ -12564,13 +12567,10 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
...
@@ -12564,13 +12567,10 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
return out
return out
@deprecated(since="2.0.0", update_to="paddle.nn.functional.maxout")
@templatedoc()
@templatedoc()
def maxout(x, groups, name=None, axis=1):
def maxout(x, groups, name=None, axis=1):
"""
"""
:alias_main: paddle.nn.functional.maxout
:alias: paddle.nn.functional.maxout,paddle.nn.functional.activation.maxout
:old_api: paddle.fluid.layers.maxout
${comment}
${comment}
Args:
Args:
...
@@ -12592,31 +12592,16 @@ def maxout(x, groups, name=None, axis=1):
...
@@ -12592,31 +12592,16 @@ def maxout(x, groups, name=None, axis=1):
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid as fluid
import paddle
paddle.enable_static()
input = fluid.data(
input = fluid.data(
name='data',
name='data',
shape=[None, 256, 32, 32],
shape=[None, 256, 32, 32],
dtype='float32')
dtype='float32')
out = fluid.layers.maxout(input, groups=2)
out = fluid.layers.maxout(input, groups=2)
"""
"""
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
return paddle.nn.functional.maxout(**locals())
helper = LayerHelper("maxout", **locals())
if axis not in [1, -1, 3]:
raise ValueError(
"Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
"Attr(axis): %s." % str(axis))
if axis == -1:
axis = 3
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="maxout",
inputs={"X": x},
attrs={"groups": groups,
"axis": axis},
outputs={"Out": out})
return out
def space_to_depth(x, blocksize, name=None):
def space_to_depth(x, blocksize, name=None):
...
@@ -14877,10 +14862,6 @@ def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
...
@@ -14877,10 +14862,6 @@ def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
@templatedoc()
@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
"""
"""
:alias_main: paddle.nn.functional.hard_swish
:alias: paddle.nn.functional.hard_swish,paddle.nn.functional.activation.hard_swish
:old_api: paddle.fluid.layers.hard_swish
This operator implements the hard_swish activation function.
This operator implements the hard_swish activation function.
Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
...
@@ -14911,7 +14892,9 @@ def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
...
@@ -14911,7 +14892,9 @@ def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid as fluid
import paddle
import numpy as np
import numpy as np
paddle.enable_static()
DATATYPE='float32'
DATATYPE='float32'
...
@@ -14926,6 +14909,10 @@ def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
...
@@ -14926,6 +14909,10 @@ def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
print(out) # [[0.66666667, 1.66666667,3., 4.]]
print(out) # [[0.66666667, 1.66666667,3., 4.]]
"""
"""
if in_dygraph_mode():
return core.ops.hard_swish(x, 'threshold', threshold, 'scale', scale,
'offset', offset)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
'hard_swish')
'hard_swish')
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
0025e0d8
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
0025e0d8
...
@@ -1657,21 +1657,6 @@ class TestLayer(LayerTest):
...
@@ -1657,21 +1657,6 @@ class TestLayer(LayerTest):
with
self
.
assertRaises
(
TypeError
):
with
self
.
assertRaises
(
TypeError
):
layers
.
eye
(
num_rows
=
3
,
batch_shape
=
[
-
1
])
layers
.
eye
(
num_rows
=
3
,
batch_shape
=
[
-
1
])
def
test_hard_swish
(
self
):
with
self
.
static_graph
():
t
=
layers
.
data
(
name
=
't'
,
shape
=
[
3
,
3
],
dtype
=
'float32'
)
ret
=
layers
.
hard_swish
(
t
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
't'
:
np
.
ones
(
[
3
,
3
],
dtype
=
'float32'
)},
fetch_list
=
[
ret
])[
0
]
with
self
.
dynamic_graph
():
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_ret
=
layers
.
hard_swish
(
base
.
to_variable
(
t
))
dy_ret_rlt
=
dy_ret
.
numpy
()
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret_rlt
))
def
test_while_loop
(
self
):
def
test_while_loop
(
self
):
with
self
.
static_graph
():
with
self
.
static_graph
():
i
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
0
)
i
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
0
)
...
@@ -2563,13 +2548,6 @@ class TestBook(LayerTest):
...
@@ -2563,13 +2548,6 @@ class TestBook(LayerTest):
output
=
layers
.
l2_normalize
(
x
,
axis
=
1
)
output
=
layers
.
l2_normalize
(
x
,
axis
=
1
)
return
output
return
output
def
make_maxout
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
data
=
self
.
_get_data
(
name
=
'x'
,
shape
=
[
8
,
6
,
6
],
dtype
=
"float32"
)
output
=
layers
.
maxout
(
x
=
data
,
groups
=
2
)
return
(
output
)
def
make_crop
(
self
):
def
make_crop
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
fluid
.
default_startup_program
()):
...
@@ -2656,13 +2634,6 @@ class TestBook(LayerTest):
...
@@ -2656,13 +2634,6 @@ class TestBook(LayerTest):
name
=
'prelu'
)
name
=
'prelu'
)
return
(
out
)
return
(
out
)
def
make_brelu
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
input
=
self
.
_get_data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
brelu
(
input
,
t_min
=
1.0
,
t_max
=
20.0
,
name
=
'brelu'
)
return
(
out
)
def
make_soft_relu
(
self
):
def
make_soft_relu
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
fluid
.
default_startup_program
()):
...
...
python/paddle/fluid/tests/unittests/test_maxout_op.py
浏览文件 @
0025e0d8
...
@@ -16,32 +16,43 @@ from __future__ import print_function
...
@@ -16,32 +16,43 @@ from __future__ import print_function
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
paddle.nn.functional
as
F
from
op_test
import
OpTest
from
op_test
import
OpTest
paddle
.
enable_static
()
np
.
random
.
seed
(
1
)
def
maxout_forward_naive
(
input
,
groups
,
channel_axis
):
s0
,
s1
,
s2
,
s3
=
input
.
shape
def
maxout_forward_naive
(
x
,
groups
,
channel_axis
):
if
channel_axis
==
3
:
s0
,
s1
,
s2
,
s3
=
x
.
shape
return
np
.
ndarray
([
s0
,
s1
,
s2
,
s3
//
groups
,
groups
],
\
if
channel_axis
==
1
:
buffer
=
input
,
dtype
=
input
.
dtype
).
max
(
axis
=
(
4
))
return
np
.
ndarray
([
s0
,
s1
//
groups
,
groups
,
s2
,
s3
],
\
return
np
.
ndarray
([
s0
,
s1
//
groups
,
groups
,
s2
,
s3
],
\
buffer
=
x
,
dtype
=
x
.
dtype
).
max
(
axis
=
2
)
buffer
=
input
,
dtype
=
input
.
dtype
).
max
(
axis
=
(
2
))
return
np
.
ndarray
([
s0
,
s1
,
s2
,
s3
//
groups
,
groups
],
\
buffer
=
x
,
dtype
=
x
.
dtype
).
max
(
axis
=
4
)
class
TestMaxOutOp
(
OpTest
):
class
TestMaxOutOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"maxout"
self
.
op_type
=
"maxout"
self
.
init_test_case
()
self
.
dtype
=
'float64'
input
=
np
.
random
.
random
(
self
.
shape
)
self
.
shape
=
[
3
,
6
,
2
,
4
]
output
=
self
.
MaxOut_forward_naive
(
input
,
self
.
groups
,
self
.
axis
)
self
.
groups
=
2
self
.
axis
=
1
self
.
set_attrs
()
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
out
=
maxout_forward_naive
(
x
,
self
.
groups
,
self
.
axis
)
self
.
inputs
=
{
'X'
:
input
}
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'groups'
:
self
.
groups
,
'axis'
:
self
.
axis
}
self
.
attrs
=
{
'groups'
:
self
.
groups
,
'axis'
:
self
.
axis
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
outputs
=
{
'Out'
:
output
}
def
set_attrs
(
self
):
pass
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
...
@@ -49,65 +60,89 @@ class TestMaxOutOp(OpTest):
...
@@ -49,65 +60,89 @@ class TestMaxOutOp(OpTest):
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
def
init_test_case
(
self
):
self
.
MaxOut_forward_naive
=
maxout_forward_naive
self
.
shape
=
[
100
,
6
,
2
,
2
]
self
.
groups
=
2
self
.
axis
=
1
class
TestMaxOutOpAxis
(
TestMaxOutOp
):
class
TestMaxOutOpAxis0
(
TestMaxOutOp
):
def
init_test_case
(
self
):
def
set_attrs
(
self
):
self
.
MaxOut_forward_naive
=
maxout_forward_naive
self
.
axis
=
-
1
self
.
shape
=
[
100
,
2
,
2
,
6
]
# NHWC format
self
.
groups
=
2
self
.
axis
=
3
class
TestMaxOutOpAxisAPI
(
unittest
.
TestCase
):
class
TestMaxOutOpAxis1
(
TestMaxOutOp
):
def
test_axis
(
self
):
def
set_attrs
(
self
):
data1
=
fluid
.
data
(
name
=
'data1'
,
shape
=
[
3
,
6
,
2
,
2
],
dtype
=
'float32'
)
self
.
axis
=
3
data2
=
fluid
.
data
(
name
=
'data2'
,
shape
=
[
3
,
2
,
2
,
6
],
dtype
=
'float32'
)
out1
=
fluid
.
layers
.
maxout
(
data1
,
groups
=
2
,
axis
=
1
)
out2
=
fluid
.
layers
.
maxout
(
data2
,
groups
=
2
,
axis
=-
1
)
data1_np
=
np
.
random
.
random
((
3
,
6
,
2
,
2
)).
astype
(
"float32"
)
data2_np
=
np
.
transpose
(
data1_np
,
[
0
,
2
,
3
,
1
])
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
results
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"data1"
:
data1_np
,
"data2"
:
data2_np
},
fetch_list
=
[
out1
,
out2
],
return_numpy
=
True
)
self
.
assertTrue
(
class
TestMaxOutOpFP32
(
TestMaxOutOp
):
np
.
allclose
(
results
[
0
],
np
.
transpose
(
results
[
1
],
(
0
,
3
,
1
,
2
))))
def
set_attrs
(
self
):
self
.
dtype
=
'float32'
def
test_exception
(
self
):
input
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
2
,
4
,
6
,
6
],
dtype
=
"float32"
)
def
_attr_axis
():
class
TestMaxOutOpGroups
(
TestMaxOutOp
):
out
=
fluid
.
layers
.
maxout
(
input
,
groups
=
2
,
axis
=
2
)
def
set_attrs
(
self
):
self
.
groups
=
3
self
.
assertRaises
(
ValueError
,
_attr_axis
)
class
TestMaxoutAPI
(
unittest
.
TestCase
):
# test paddle.nn.Maxout, paddle.nn.functional.maxout
def
setUp
(
self
):
self
.
x_np
=
np
.
random
.
uniform
(
-
1
,
1
,
[
2
,
6
,
5
,
4
]).
astype
(
np
.
float64
)
self
.
groups
=
2
self
.
axis
=
1
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_static_api
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out1
=
F
.
maxout
(
x
,
self
.
groups
,
self
.
axis
)
m
=
paddle
.
nn
.
Maxout
(
self
.
groups
,
self
.
axis
)
out2
=
m
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
maxout_forward_naive
(
self
.
x_np
,
self
.
groups
,
self
.
axis
)
for
r
in
res
:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
r
))
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
maxout
(
x
,
self
.
groups
,
self
.
axis
)
m
=
paddle
.
nn
.
Maxout
(
self
.
groups
,
self
.
axis
)
out2
=
m
(
x
)
out_ref
=
maxout_forward_naive
(
self
.
x_np
,
self
.
groups
,
self
.
axis
)
for
r
in
[
out1
,
out2
]:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
r
.
numpy
()))
out3
=
F
.
maxout
(
x
,
self
.
groups
,
-
1
)
out3_ref
=
maxout_forward_naive
(
self
.
x_np
,
self
.
groups
,
-
1
)
self
.
assertTrue
(
np
.
allclose
(
out3_ref
,
out3
.
numpy
()))
paddle
.
enable_static
()
def
test_fluid_api
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out
=
fluid
.
layers
.
maxout
(
x
,
groups
=
self
.
groups
,
axis
=
self
.
axis
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
out_ref
=
maxout_forward_naive
(
self
.
x_np
,
self
.
groups
,
self
.
axis
)
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
res
[
0
]))
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out
=
paddle
.
fluid
.
layers
.
maxout
(
x
,
groups
=
self
.
groups
,
axis
=
self
.
axis
)
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
out
.
numpy
()))
paddle
.
enable_static
()
class
TestMaxOutOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_errors
(
self
):
with
p
rogram_guard
(
Program
()):
with
p
addle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
maxout
,
1
,
2
)
self
.
assertRaises
(
TypeError
,
F
.
maxout
,
1
)
# The input dtype must be float16, float32, float64.
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
x_int32
=
paddle
.
data
(
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
maxout
,
x_int32
,
2
)
name
=
'x_int32'
,
shape
=
[
2
,
4
,
6
,
8
],
dtype
=
'int32'
)
# support the input dtype is float32
self
.
assertRaises
(
TypeError
,
F
.
maxout
,
x_int32
)
x_fp32
=
fluid
.
data
(
name
=
'x_fp32'
,
shape
=
[
12
,
10
],
dtype
=
'float32'
)
fluid
.
layers
.
maxout
(
x_fp32
,
2
)
x_float32
=
paddle
.
data
(
name
=
'x_float32'
,
shape
=
[
2
,
4
,
6
,
8
])
self
.
assertRaises
(
ValueError
,
F
.
maxout
,
x_float32
,
2
,
2
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/nn/__init__.py
浏览文件 @
0025e0d8
...
@@ -55,6 +55,7 @@ from .layer.activation import ELU #DEFINE_ALIAS
...
@@ -55,6 +55,7 @@ from .layer.activation import ELU #DEFINE_ALIAS
from
.layer.activation
import
GELU
#DEFINE_ALIAS
from
.layer.activation
import
GELU
#DEFINE_ALIAS
from
.layer.activation
import
Tanh
#DEFINE_ALIAS
from
.layer.activation
import
Tanh
#DEFINE_ALIAS
from
.layer.activation
import
Hardshrink
#DEFINE_ALIAS
from
.layer.activation
import
Hardshrink
#DEFINE_ALIAS
from
.layer.activation
import
Hardswish
#DEFINE_ALIAS
from
.layer.activation
import
Hardtanh
#DEFINE_ALIAS
from
.layer.activation
import
Hardtanh
#DEFINE_ALIAS
from
.layer.activation
import
PReLU
#DEFINE_ALIAS
from
.layer.activation
import
PReLU
#DEFINE_ALIAS
from
.layer.activation
import
ReLU
#DEFINE_ALIAS
from
.layer.activation
import
ReLU
#DEFINE_ALIAS
...
@@ -62,6 +63,7 @@ from .layer.activation import ReLU6 #DEFINE_ALIAS
...
@@ -62,6 +63,7 @@ from .layer.activation import ReLU6 #DEFINE_ALIAS
from
.layer.activation
import
SELU
#DEFINE_ALIAS
from
.layer.activation
import
SELU
#DEFINE_ALIAS
from
.layer.activation
import
LeakyReLU
#DEFINE_ALIAS
from
.layer.activation
import
LeakyReLU
#DEFINE_ALIAS
from
.layer.activation
import
Sigmoid
#DEFINE_ALIAS
from
.layer.activation
import
Sigmoid
#DEFINE_ALIAS
from
.layer.activation
import
Hardsigmoid
#DEFINE_ALIAS
from
.layer.activation
import
LogSigmoid
from
.layer.activation
import
LogSigmoid
from
.layer.activation
import
Softmax
#DEFINE_ALIAS
from
.layer.activation
import
Softmax
#DEFINE_ALIAS
from
.layer.activation
import
Softplus
#DEFINE_ALIAS
from
.layer.activation
import
Softplus
#DEFINE_ALIAS
...
@@ -70,6 +72,7 @@ from .layer.activation import Softsign #DEFINE_ALIAS
...
@@ -70,6 +72,7 @@ from .layer.activation import Softsign #DEFINE_ALIAS
from
.layer.activation
import
Tanhshrink
#DEFINE_ALIAS
from
.layer.activation
import
Tanhshrink
#DEFINE_ALIAS
from
.layer.activation
import
LogSoftmax
#DEFINE_ALIAS
from
.layer.activation
import
LogSoftmax
#DEFINE_ALIAS
from
.layer.activation
import
HSigmoid
#DEFINE_ALIAS
from
.layer.activation
import
HSigmoid
#DEFINE_ALIAS
from
.layer.activation
import
Maxout
#DEFINE_ALIAS
from
.layer.common
import
BilinearTensorProduct
#DEFINE_ALIAS
from
.layer.common
import
BilinearTensorProduct
#DEFINE_ALIAS
from
.layer.common
import
Pool2D
#DEFINE_ALIAS
from
.layer.common
import
Pool2D
#DEFINE_ALIAS
from
.layer.common
import
Pad2D
#DEFINE_ALIAS
from
.layer.common
import
Pad2D
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
0025e0d8
...
@@ -29,14 +29,13 @@ from . import pooling
...
@@ -29,14 +29,13 @@ from . import pooling
__all__
+=
pooling
.
__all__
__all__
+=
pooling
.
__all__
from
.
import
loss
from
.
import
loss
__all__
+=
loss
.
__all__
__all__
+=
loss
.
__all__
from
.activation
import
brelu
#DEFINE_ALIAS
from
.activation
import
elu
#DEFINE_ALIAS
from
.activation
import
elu
#DEFINE_ALIAS
from
.activation
import
erf
#DEFINE_ALIAS
from
.activation
import
erf
#DEFINE_ALIAS
from
.activation
import
gelu
#DEFINE_ALIAS
from
.activation
import
gelu
#DEFINE_ALIAS
from
.activation
import
hardshrink
#DEFINE_ALIAS
from
.activation
import
hardshrink
#DEFINE_ALIAS
from
.activation
import
hardtanh
#DEFINE_ALIAS
from
.activation
import
hardtanh
#DEFINE_ALIAS
from
.activation
import
hard
_
sigmoid
#DEFINE_ALIAS
from
.activation
import
hardsigmoid
#DEFINE_ALIAS
from
.activation
import
hard
_
swish
#DEFINE_ALIAS
from
.activation
import
hardswish
#DEFINE_ALIAS
from
.activation
import
hsigmoid
#DEFINE_ALIAS
from
.activation
import
hsigmoid
#DEFINE_ALIAS
from
.activation
import
leaky_relu
#DEFINE_ALIAS
from
.activation
import
leaky_relu
#DEFINE_ALIAS
from
.activation
import
log_sigmoid
#DEFINE_ALIAS
from
.activation
import
log_sigmoid
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
0025e0d8
...
@@ -13,11 +13,7 @@
...
@@ -13,11 +13,7 @@
# limitations under the License.
# limitations under the License.
# TODO: define activation functions of neural network
# TODO: define activation functions of neural network
from
...fluid.layers
import
brelu
#DEFINE_ALIAS
from
...fluid.layers
import
erf
#DEFINE_ALIAS
from
...fluid.layers
import
erf
#DEFINE_ALIAS
from
...fluid.layers
import
hard_sigmoid
#DEFINE_ALIAS
from
...fluid.layers
import
hard_swish
#DEFINE_ALIAS
from
...fluid.layers
import
maxout
#DEFINE_ALIAS
from
...fluid.layers
import
soft_relu
#DEFINE_ALIAS
from
...fluid.layers
import
soft_relu
#DEFINE_ALIAS
from
...fluid.layers
import
swish
#DEFINE_ALIAS
from
...fluid.layers
import
swish
#DEFINE_ALIAS
from
...fluid.layers
import
sigmoid
#DEFINE_ALIAS
from
...fluid.layers
import
sigmoid
#DEFINE_ALIAS
...
@@ -25,14 +21,13 @@ from ...fluid.layers import thresholded_relu #DEFINE_ALIAS
...
@@ -25,14 +21,13 @@ from ...fluid.layers import thresholded_relu #DEFINE_ALIAS
from
...tensor.math
import
tanh
#DEFINE_ALIAS
from
...tensor.math
import
tanh
#DEFINE_ALIAS
__all__
=
[
__all__
=
[
'brelu'
,
'elu'
,
'elu'
,
'erf'
,
'erf'
,
'gelu'
,
'gelu'
,
'hardshrink'
,
'hardshrink'
,
'hardtanh'
,
'hardtanh'
,
'hard
_
sigmoid'
,
'hardsigmoid'
,
'hard
_
swish'
,
'hardswish'
,
'hsigmoid'
,
'hsigmoid'
,
'leaky_relu'
,
'leaky_relu'
,
'log_sigmoid'
,
'log_sigmoid'
,
...
@@ -75,10 +70,10 @@ def elu(x, alpha=1.0, name=None):
...
@@ -75,10 +70,10 @@ def elu(x, alpha=1.0, name=None):
alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Returns:
A Tensor with the same data type and shape as ``x`` .
A Tensor with the same data type and shape as ``x`` .
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -89,7 +84,7 @@ def elu(x, alpha=1.0, name=None):
...
@@ -89,7 +84,7 @@ def elu(x, alpha=1.0, name=None):
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
out = F.elu(x, alpha=0.2)
out = F.elu(x, alpha=0.2)
# [[-0.12642411 6. ]
# [[-0.12642411 6. ]
# [ 1. 15.6 ]]
# [ 1. 15.6 ]]
"""
"""
...
@@ -123,16 +118,16 @@ def gelu(x, approximate=False, name=None):
...
@@ -123,16 +118,16 @@ def gelu(x, approximate=False, name=None):
.. math::
.. math::
gelu(x) = 0.5 * x * (1 + erf(
\\
frac{x}{
\\
sqrt{2}}))
gelu(x) = 0.5 * x * (1 + erf(
\\
frac{x}{
\\
sqrt{2}}))
Parameters:
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
x (Tensor): The input Tensor with data type float32, float64.
approximate (bool, optional): Wether to enable approximation. Default is False.
approximate (bool, optional): Wether to enable approximation. Default is False.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Returns:
A Tensor with the same data type and shape as ``x`` .
A Tensor with the same data type and shape as ``x`` .
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -265,6 +260,109 @@ def hardtanh(x, min=-1.0, max=1.0, name=None):
...
@@ -265,6 +260,109 @@ def hardtanh(x, min=-1.0, max=1.0, name=None):
return
out
return
out
def
hardsigmoid
(
x
,
name
=
None
):
"""
hardsigmoid activation.
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
.. math::
hardsigmoid(x)=
\\
left
\\
{
\\
begin{aligned}
&0, & &
\\
text{if } x
\\
leq -3
\\\\
&1, & &
\\
text{if } x
\\
geq 3
\\\\
&x/6 + 1/2, & &
\\
text{otherwise}
\\
end{aligned}
\\
right.
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.to_tensor([-4., 5., 1.])
out = F.hardsigmoid(x) # [0., 1., 0.666667]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
hard_sigmoid
(
x
,
'slope'
,
0.1666666666666667
,
'offset'
,
0.5
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'hardsigmoid'
)
helper
=
LayerHelper
(
'hardsigmoid'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'hard_sigmoid'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'slope'
:
0.1666666666666667
,
'offset'
:
0.5
})
return
out
def
hardswish
(
x
,
name
=
None
):
"""
hardswish activation
hardswish is proposed in MobileNetV3, and performs better in computational stability
and efficiency compared to swish function. For more details please refer
to: https://arxiv.org/pdf/1905.02244.pdf
.. math::
hardswish(x)=
\\
left
\\
{
\\
begin{aligned}
&0, & &
\\
text{if } x
\\
leq -3
\\\\
&x, & &
\\
text{if } x
\\
geq 3
\\\\
&
\\
frac{x(x+3)}{6}, & &
\\
text{otherwise}
\\
end{aligned}
\\
right.
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.to_tensor([-4., 5., 1.])
out = F.hardswish(x) # [0., 5., 0.666667]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
hard_swish
(
x
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'hardswish'
)
helper
=
LayerHelper
(
'hardswish'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'hard_swish'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
})
return
out
def
hsigmoid
(
input
,
def
hsigmoid
(
input
,
label
,
label
,
weight
,
weight
,
...
@@ -489,7 +587,7 @@ def prelu(x, weight, name=None):
...
@@ -489,7 +587,7 @@ def prelu(x, weight, name=None):
assert
len
(
weight
.
shape
assert
len
(
weight
.
shape
)
==
1
,
"The dim count of weight shape should be 1 in prelu()."
)
==
1
,
"The dim count of weight shape should be 1 in prelu()."
# NOTE(): The input of this API should be ``N,C,...`` format,
# NOTE(): The input of this API should be ``N,C,...`` format,
# which means x.shape[0] is batch_size and x.shape[0] is channel.
# which means x.shape[0] is batch_size and x.shape[0] is channel.
mode
=
'all'
mode
=
'all'
if
weight
.
shape
[
0
]
>
1
:
if
weight
.
shape
[
0
]
>
1
:
...
@@ -559,15 +657,15 @@ def log_sigmoid(x, name=None):
...
@@ -559,15 +657,15 @@ def log_sigmoid(x, name=None):
.. math::
.. math::
log
\\
_sigmoid(x) = log
\\
frac{1}{1 + e^{-x}}
log
\\
_sigmoid(x) = log
\\
frac{1}{1 + e^{-x}}
Parameters:
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
x (Tensor): The input Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Returns:
A Tensor with the same data type and shape as ``x`` .
A Tensor with the same data type and shape as ``x`` .
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -591,6 +689,81 @@ def log_sigmoid(x, name=None):
...
@@ -591,6 +689,81 @@ def log_sigmoid(x, name=None):
return
out
return
out
def
maxout
(
x
,
groups
,
axis
=
1
,
name
=
None
):
"""
maxout activation.
Assumed the input shape is (N, Ci, H, W).
The output shape is (N, Co, H, W).
Then Co = Ci/groups and the operator formula is as follows:
.. math::
&out_{si+j} =
\\
max_{k} x_{gsi + sk + j}
\\\\
&g = groups
\\\\
&s =
\\
frac{input.size}{num
\\
_channels}
\\\\
&0
\\
le i <
\\
frac{num
\\
_channels}{groups}
\\\\
&0
\\
le j < s
\\\\
&0
\\
le k < groups
Parameters:
x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
of input is float32 or float64.
groups (int, optional): The groups number of maxout. `groups` specifies the
index of channel dimension where maxout will be performed. This must be
a factor of number of features. Default is 1.
axis (int, optional): The axis along which to perform maxout calculations.
It should be 1 when data format is NCHW, be -1 or 3 when data format
is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
Default is 1.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.rand([1, 2, 3, 4])
# [[[[0.5002636 0.22272532 0.17402348 0.2874594 ]
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.02879342 0.88725346 0.61093384 0.38833922]]
# [[0.5231306 0.03807496 0.91661984 0.15602879]
# [0.666127 0.616567 0.30741522 0.24044901]
# [0.7142536 0.7351477 0.31588817 0.23782359]]]]
out = F.maxout(x, groups=2)
# [[[[0.5231306 0.22272532 0.91661984 0.2874594 ]
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.7142536 0.88725346 0.61093384 0.38833922]]]]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
maxout
(
x
,
'groups'
,
groups
,
'axis'
,
axis
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'maxout'
)
if
axis
not
in
[
1
,
-
1
,
3
]:
raise
ValueError
(
"Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
"Attr(axis): %s."
%
str
(
axis
))
if
axis
==
-
1
:
axis
=
3
helper
=
LayerHelper
(
'maxout'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'maxout'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'groups'
:
groups
,
'axis'
:
axis
})
return
out
def
relu6
(
x
,
name
=
None
):
def
relu6
(
x
,
name
=
None
):
"""
"""
relu6 activation
relu6 activation
...
@@ -778,7 +951,7 @@ def softmax(x, axis=-1, dtype=None, name=None):
...
@@ -778,7 +951,7 @@ def softmax(x, axis=-1, dtype=None, name=None):
:math:`axis + D` . Default is -1.
:math:`axis + D` . Default is -1.
dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
type of the output tensor. If dtype is specified, ``x`` is casted
type of the output tensor. If dtype is specified, ``x`` is casted
to ``dtype`` before the operation is performed. This is useful for
to ``dtype`` before the operation is performed. This is useful for
preventing data type overflows. Supported dtype: float32, float64.
preventing data type overflows. Supported dtype: float32, float64.
If ``dtype`` is None, the output Tensor has the same dtype as x.
If ``dtype`` is None, the output Tensor has the same dtype as x.
Default is None.
Default is None.
...
@@ -1051,13 +1224,13 @@ def log_softmax(x, axis=-1, dtype=None, name=None):
...
@@ -1051,13 +1224,13 @@ def log_softmax(x, axis=-1, dtype=None, name=None):
:math:`axis + D` . Default is -1.
:math:`axis + D` . Default is -1.
dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
type of the output tensor. If dtype is specified, ``x`` is casted
type of the output tensor. If dtype is specified, ``x`` is casted
to ``dtype`` before the operation is performed. This is useful for
to ``dtype`` before the operation is performed. This is useful for
preventing data type overflows. Supported dtype: float32, float64.
preventing data type overflows. Supported dtype: float32, float64.
If ``dtype`` is None, the output Tensor has the same dtype as x.
If ``dtype`` is None, the output Tensor has the same dtype as x.
Default is None.
Default is None.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Returns:
A Tensor with the same shape and data type (use ``dtype`` if it is
A Tensor with the same shape and data type (use ``dtype`` if it is
specified) as x.
specified) as x.
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
0025e0d8
...
@@ -18,6 +18,7 @@ __all__ = [
...
@@ -18,6 +18,7 @@ __all__ = [
'ELU'
,
'ELU'
,
'GELU'
,
'GELU'
,
'Hardshrink'
,
'Hardshrink'
,
'Hardswish'
,
'Tanh'
,
'Tanh'
,
'Hardtanh'
,
'Hardtanh'
,
'PReLU'
,
'PReLU'
,
...
@@ -26,6 +27,7 @@ __all__ = [
...
@@ -26,6 +27,7 @@ __all__ = [
'SELU'
,
'SELU'
,
'LeakyReLU'
,
'LeakyReLU'
,
'Sigmoid'
,
'Sigmoid'
,
'Hardsigmoid'
,
'Softmax'
,
'Softmax'
,
'Softplus'
,
'Softplus'
,
'Softshrink'
,
'Softshrink'
,
...
@@ -33,6 +35,7 @@ __all__ = [
...
@@ -33,6 +35,7 @@ __all__ = [
'Tanhshrink'
,
'Tanhshrink'
,
'LogSigmoid'
,
'LogSigmoid'
,
'LogSoftmax'
,
'LogSoftmax'
,
'Maxout'
,
'HSigmoid'
,
'HSigmoid'
,
]
]
...
@@ -50,18 +53,18 @@ class ELU(layers.Layer):
...
@@ -50,18 +53,18 @@ class ELU(layers.Layer):
ELU Activation.
ELU Activation.
.. math::
.. math::
ELU(x) = max(0, x) + min(0,
\\
alpha * (e^{x}-1))
ELU(x) = max(0, x) + min(0,
\\
alpha * (e^{x}-1))
Parameters:
Parameters:
alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Shape:
Shape:
- input: Tensor with any shape.
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
- output: Tensor with the same shape as input.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -106,11 +109,11 @@ class GELU(layers.Layer):
...
@@ -106,11 +109,11 @@ class GELU(layers.Layer):
approximate (bool, optional): Wether to enable approximation. Default is False.
approximate (bool, optional): Wether to enable approximation. Default is False.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Shape:
Shape:
- input: Tensor with any shape.
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
- output: Tensor with the same shape as input.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -120,7 +123,7 @@ class GELU(layers.Layer):
...
@@ -120,7 +123,7 @@ class GELU(layers.Layer):
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
m = paddle.nn.GELU()
m = paddle.nn.GELU()
out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
...
@@ -184,6 +187,52 @@ class Hardshrink(layers.Layer):
...
@@ -184,6 +187,52 @@ class Hardshrink(layers.Layer):
return
F
.
hardshrink
(
x
,
self
.
_threshold
,
self
.
_name
)
return
F
.
hardshrink
(
x
,
self
.
_threshold
,
self
.
_name
)
class
Hardswish
(
layers
.
Layer
):
"""
Hardswish activation
Hardswish is proposed in MobileNetV3, and performs better in computational stability
and efficiency compared to swish function. For more details please refer
to: https://arxiv.org/pdf/1905.02244.pdf
.. math::
Hardswish(x)=
\\
left
\\
{
\\
begin{aligned}
&0, & &
\\
text{if } x
\\
leq -3
\\\\
&x, & &
\\
text{if } x
\\
geq 3
\\\\
&
\\
frac{x(x+3)}{6}, & &
\\
text{otherwise}
\\
end{aligned}
\\
right.
Parameters:
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([-4., 5., 1.])
m = paddle.nn.Hardswish()
out = m(x) # [0., 5., 0.666667]
"""
def
__init__
(
self
,
name
=
None
):
super
(
Hardswish
,
self
).
__init__
()
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
hardswish
(
x
,
self
.
_name
)
class
Tanh
(
layers
.
Layer
):
class
Tanh
(
layers
.
Layer
):
"""
"""
Tanh Activation.
Tanh Activation.
...
@@ -240,11 +289,11 @@ class Hardtanh(layers.Layer):
...
@@ -240,11 +289,11 @@ class Hardtanh(layers.Layer):
max (float, optional): The value of max for Hardtanh. Default is 1.
max (float, optional): The value of max for Hardtanh. Default is 1.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Shape:
Shape:
- input: Tensor with any shape.
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
- output: Tensor with the same shape as input.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -274,7 +323,7 @@ class HSigmoid(layers.Layer):
...
@@ -274,7 +323,7 @@ class HSigmoid(layers.Layer):
:alias: paddle.nn.HSigmoid,paddle.nn.layer.HSigmoid,paddle.nn.layer.activation.HSigmoid
:alias: paddle.nn.HSigmoid,paddle.nn.layer.HSigmoid,paddle.nn.layer.activation.HSigmoid
Hierarchical Sigmoid Layer.
Hierarchical Sigmoid Layer.
The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
and speed up the model training, especially the training of language model.
and speed up the model training, especially the training of language model.
Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
...
@@ -309,7 +358,7 @@ class HSigmoid(layers.Layer):
...
@@ -309,7 +358,7 @@ class HSigmoid(layers.Layer):
is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
set, the bias is initialized zero. Default: None.
set, the bias is initialized zero. Default: None.
is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and
is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and
`path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
`path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
should not be passed to its forward method. Default: False.
should not be passed to its forward method. Default: False.
is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
...
@@ -414,19 +463,19 @@ class PReLU(layers.Layer):
...
@@ -414,19 +463,19 @@ class PReLU(layers.Layer):
Parameters:
Parameters:
num_parameters (int, optional): Number of `weight` to learn. The supported values are:
num_parameters (int, optional): Number of `weight` to learn. The supported values are:
1 - a single parameter `alpha` is used for all input channels;
1 - a single parameter `alpha` is used for all input channels;
Number of channels - a seperate `alpha` is used for each input channel.
Number of channels - a seperate `alpha` is used for each input channel.
Default is 1.
Default is 1.
init (float, optional): Init value of learnable `weight`. Default is 0.25.
init (float, optional): Init value of learnable `weight`. Default is 0.25.
weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`.
Default is None. For more information, please refer to :ref:`api_fluid_ParamAttr`.
Default is None. For more information, please refer to :ref:`api_fluid_ParamAttr`.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Shape:
Shape:
- input: Tensor with any shape. Default dtype is float32.
- input: Tensor with any shape. Default dtype is float32.
- output: Tensor with the same shape as input.
- output: Tensor with the same shape as input.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -487,7 +536,7 @@ class ReLU(layers.Layer):
...
@@ -487,7 +536,7 @@ class ReLU(layers.Layer):
Shape:
Shape:
- input: Tensor with any shape.
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
- output: Tensor with the same shape as input.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -613,11 +662,11 @@ class LeakyReLU(layers.Layer):
...
@@ -613,11 +662,11 @@ class LeakyReLU(layers.Layer):
:math:`x < 0` . Default is 0.01.
:math:`x < 0` . Default is 0.01.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Shape:
Shape:
- input: Tensor with any shape.
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
- output: Tensor with the same shape as input.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -643,11 +692,11 @@ class LeakyReLU(layers.Layer):
...
@@ -643,11 +692,11 @@ class LeakyReLU(layers.Layer):
class
Sigmoid
(
layers
.
Layer
):
class
Sigmoid
(
layers
.
Layer
):
"""
"""
this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
.. math::
.. math::
Sigmoid(x) =
\f
rac{1}{1 + e^{-x}}
Sigmoid(x) =
\f
rac{1}{1 + e^{-x}}
Parameters:
Parameters:
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
...
@@ -656,7 +705,7 @@ class Sigmoid(layers.Layer):
...
@@ -656,7 +705,7 @@ class Sigmoid(layers.Layer):
Returns:
Returns:
A callable object of Sigmoid.
A callable object of Sigmoid.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -680,6 +729,53 @@ class Sigmoid(layers.Layer):
...
@@ -680,6 +729,53 @@ class Sigmoid(layers.Layer):
return
F
.
sigmoid
(
x
,
self
.
name
)
return
F
.
sigmoid
(
x
,
self
.
name
)
class
Hardsigmoid
(
layers
.
Layer
):
"""
This interface is used to construct a callable object of the ``Hardsigmoid`` class.
This layer calcluate the `hardsigmoid` of input x.
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
.. math::
Hardsigmoid(x)=
\\
left
\\
{
\\
begin{aligned}
&0, & &
\\
text{if } x
\\
leq -3
\\\\
&1, & &
\\
text{if } x
\\
geq 3
\\\\
&x/6 + 1/2, & &
\\
text{otherwise}
\\
end{aligned}
\\
right.
Parameters:
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Shape:
x: N-D tensor, available dtype is float32, float64.
Returns:
A callable object of Hardsigmoid.
Examples:
.. code-block:: python
import paddle
m = paddle.nn.Sigmoid()
x = paddle.to_tensor([-4., 5., 1.])
out = m(x) # [0., 1, 0.666667]
"""
def
__init__
(
self
,
name
=
None
):
super
(
Hardsigmoid
,
self
).
__init__
()
self
.
name
=
name
def
forward
(
self
,
x
):
return
F
.
hardsigmoid
(
x
,
self
.
name
)
class
Softplus
(
layers
.
Layer
):
class
Softplus
(
layers
.
Layer
):
"""
"""
Softplus Activation
Softplus Activation
...
@@ -842,7 +938,7 @@ class Tanhshrink(layers.Layer):
...
@@ -842,7 +938,7 @@ class Tanhshrink(layers.Layer):
class
LogSigmoid
(
layers
.
Layer
):
class
LogSigmoid
(
layers
.
Layer
):
"""
"""
LogSigmoid Activation.
LogSigmoid Activation.
.. math::
.. math::
LogSigmoid(x) = log
\\
frac{1}{1 + e^{-x}}
LogSigmoid(x) = log
\\
frac{1}{1 + e^{-x}}
...
@@ -851,11 +947,11 @@ class LogSigmoid(layers.Layer):
...
@@ -851,11 +947,11 @@ class LogSigmoid(layers.Layer):
x (Tensor): The input Tensor with data type float32, or float64.
x (Tensor): The input Tensor with data type float32, or float64.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Shape:
Shape:
- input: Tensor with any shape.
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
- output: Tensor with the same shape as input.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -961,7 +1057,7 @@ class Softmax(layers.Layer):
...
@@ -961,7 +1057,7 @@ class Softmax(layers.Layer):
:math:`axis + D` . Default is -1.
:math:`axis + D` . Default is -1.
dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
type of the output tensor. If dtype is specified, ``x`` is casted
type of the output tensor. If dtype is specified, ``x`` is casted
to ``dtype`` before the operation is performed. This is useful for
to ``dtype`` before the operation is performed. This is useful for
preventing data type overflows. Supported dtype: float32, float64.
preventing data type overflows. Supported dtype: float32, float64.
If ``dtype`` is None, the output Tensor has the same dtype as x.
If ``dtype`` is None, the output Tensor has the same dtype as x.
Default is None.
Default is None.
...
@@ -1013,7 +1109,7 @@ class LogSoftmax(layers.Layer):
...
@@ -1013,7 +1109,7 @@ class LogSoftmax(layers.Layer):
.. math::
.. math::
Out[i, j] = log(softmax(x))
Out[i, j] = log(softmax(x))
= log(
\\
frac{\exp(X[i, j])}{
\\
sum_j(exp(X[i, j])})
= log(
\\
frac{\exp(X[i, j])}{
\\
sum_j(exp(X[i, j])})
Parameters:
Parameters:
...
@@ -1023,7 +1119,7 @@ class LogSoftmax(layers.Layer):
...
@@ -1023,7 +1119,7 @@ class LogSoftmax(layers.Layer):
same way as :math:`axis + D` . Default is -1.
same way as :math:`axis + D` . Default is -1.
name (str, optional): Name for the operation (optional, default is None).
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
For more information, please refer to :ref:`api_guide_Name`.
Shape:
Shape:
- input: Tensor with any shape.
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
- output: Tensor with the same shape as input.
...
@@ -1060,3 +1156,64 @@ class LogSoftmax(layers.Layer):
...
@@ -1060,3 +1156,64 @@ class LogSoftmax(layers.Layer):
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
return
F
.
log_softmax
(
x
,
self
.
_axis
)
return
F
.
log_softmax
(
x
,
self
.
_axis
)
class
Maxout
(
layers
.
Layer
):
"""
Maxout Activation.
Assumed the input shape is (N, Ci, H, W).
The output shape is (N, Co, H, W).
Then Co = Ci/groups and the operator formula is as follows:
.. math::
&out_{si+j} = \max_{k} x_{gsi + sk + j}
\\\\
&g = groups
\\\\
&s =
\\
frac{input.size}{num
\\
_channels}
\\\\
&0
\\
le i <
\\
frac{num
\\
_channels}{groups}
\\\\
&0
\\
le j < s
\\\\
&0
\\
le k < groups
Parameters:
groups (int, optional): The groups number of maxout. `groups` specifies the
index of channel dimension where maxout will be performed. This must be
a factor of number of features. Default is 1.
axis (int, optional): The axis along which to perform maxout calculations.
It should be 1 when data format is NCHW, be -1 or 3 when data format
is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
where D is the dimensions of ``x`` . Default is 1.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: :math:`(N, C_{in}, H_{in}, W_{in})`
- output: :math:`(N, C_{out}, H_{out}, W_{out})`
Examples:
.. code-block:: python
import paddle
x = paddle.rand([1, 2, 3, 4])
# [[[[0.5002636 0.22272532 0.17402348 0.2874594 ]
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.02879342 0.88725346 0.61093384 0.38833922]]
# [[0.5231306 0.03807496 0.91661984 0.15602879]
# [0.666127 0.616567 0.30741522 0.24044901]
# [0.7142536 0.7351477 0.31588817 0.23782359]]]]
m = paddle.nn.Maxout(groups=2)
out = m(x)
# [[[[0.5231306 0.22272532 0.91661984 0.2874594 ]
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.7142536 0.88725346 0.61093384 0.38833922]]]]
"""
def
__init__
(
self
,
groups
,
axis
=
1
,
name
=
None
):
super
(
Maxout
,
self
).
__init__
()
self
.
_groups
=
groups
self
.
_axis
=
axis
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
maxout
(
x
,
self
.
_groups
,
self
.
_axis
,
self
.
_name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录