Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
001dab0b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
001dab0b
编写于
5月 06, 2022
作者:
A
Allen Guo
提交者:
GitHub
5月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update UTs 2 (#42518)
上级
063a3509
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
845 addition
and
1154 deletion
+845
-1154
python/paddle/fluid/tests/unittests/ipu/test_mean_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_mean_op_ipu.py
+17
-58
python/paddle/fluid/tests/unittests/ipu/test_mixed_precision_inference_ipu.py
...tests/unittests/ipu/test_mixed_precision_inference_ipu.py
+120
-84
python/paddle/fluid/tests/unittests/ipu/test_mixed_precision_training_ipu.py
.../tests/unittests/ipu/test_mixed_precision_training_ipu.py
+134
-92
python/paddle/fluid/tests/unittests/ipu/test_mul_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_mul_op_ipu.py
+19
-62
python/paddle/fluid/tests/unittests/ipu/test_not_equal_op_ipu.py
...paddle/fluid/tests/unittests/ipu/test_not_equal_op_ipu.py
+130
-0
python/paddle/fluid/tests/unittests/ipu/test_one_hot_op_ipu.py
...n/paddle/fluid/tests/unittests/ipu/test_one_hot_op_ipu.py
+21
-61
python/paddle/fluid/tests/unittests/ipu/test_one_hot_v2_op_ipu.py
...addle/fluid/tests/unittests/ipu/test_one_hot_v2_op_ipu.py
+21
-61
python/paddle/fluid/tests/unittests/ipu/test_optimizer_ipu.py
...on/paddle/fluid/tests/unittests/ipu/test_optimizer_ipu.py
+0
-2
python/paddle/fluid/tests/unittests/ipu/test_pool_avg_op_ipu.py
.../paddle/fluid/tests/unittests/ipu/test_pool_avg_op_ipu.py
+33
-58
python/paddle/fluid/tests/unittests/ipu/test_pool_max_op_ipu.py
.../paddle/fluid/tests/unittests/ipu/test_pool_max_op_ipu.py
+33
-58
python/paddle/fluid/tests/unittests/ipu/test_pow_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_pow_op_ipu.py
+25
-106
python/paddle/fluid/tests/unittests/ipu/test_print_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_print_op_ipu.py
+33
-67
python/paddle/fluid/tests/unittests/ipu/test_reduce_x_op_ipu.py
.../paddle/fluid/tests/unittests/ipu/test_reduce_x_op_ipu.py
+15
-56
python/paddle/fluid/tests/unittests/ipu/test_reshape_inplace_op_ipu.py
.../fluid/tests/unittests/ipu/test_reshape_inplace_op_ipu.py
+18
-59
python/paddle/fluid/tests/unittests/ipu/test_reshape_op_ipu.py
...n/paddle/fluid/tests/unittests/ipu/test_reshape_op_ipu.py
+17
-58
python/paddle/fluid/tests/unittests/ipu/test_scale_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_scale_op_ipu.py
+25
-102
python/paddle/fluid/tests/unittests/ipu/test_scaled_optimizer_state_ipu.py
...id/tests/unittests/ipu/test_scaled_optimizer_state_ipu.py
+131
-0
python/paddle/fluid/tests/unittests/ipu/test_set_batch_size_ipu.py
...ddle/fluid/tests/unittests/ipu/test_set_batch_size_ipu.py
+25
-64
python/paddle/fluid/tests/unittests/ipu/test_slice_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_slice_op_ipu.py
+28
-106
未找到文件。
python/paddle/fluid/tests/unittests/ipu/test_mean_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
])
self
.
feed_fp32
=
{
"in_0"
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -46,59 +42,22 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
mean
(
x
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
mean
(
x
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ipu/test_mixed_precision_inference_ipu.py
浏览文件 @
001dab0b
...
...
@@ -18,7 +18,7 @@ import numpy as np
import
paddle
import
paddle.static
import
paddle.nn.functional
as
F
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionModeFull
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -28,10 +28,7 @@ class TestBase(IPUOpTest):
self
.
set_atol
()
self
.
set_data_feed
()
self
.
set_feed_attr
()
@
property
def
fp16_enabled
(
self
):
return
True
self
.
set_attrs
()
def
set_atol
(
self
):
self
.
atol
=
1e-6
...
...
@@ -42,7 +39,6 @@ class TestBase(IPUOpTest):
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
10
,
27
,
27
])
self
.
feed_fp32
=
{
"in_0"
:
data
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
"in_0"
:
data
.
astype
(
np
.
float16
)}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
...
...
@@ -54,86 +50,126 @@ class TestBase(IPUOpTest):
for
var_name
in
to_fp16_var_names
:
assert
(
block
.
var
(
var_name
).
dtype
,
paddle
.
float16
)
def
_test_base
(
self
,
exec_mode
):
generator
=
paddle
.
fluid
.
unique_name
.
UniqueNameGenerator
()
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
fluid
.
unique_name
.
guard
(
generator
):
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
# using fp32
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
3
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
# using fp16
with
paddle
.
static
.
amp
.
fp16_guard
():
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
6
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
# using fp32
x
=
paddle
.
static
.
nn
.
fc
(
x
,
size
=
10
)
loss
=
paddle
.
mean
(
x
)
fetch_list
=
[
loss
.
name
]
if
exec_mode
==
ExecutionModeFull
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
# cast model to fp16
if
exec_mode
==
ExecutionModeFull
.
IPU_MIXED_PRECISION
:
to_fp16_var_names
=
paddle
.
static
.
amp
.
cast_model_to_fp16
(
main_prog
,
self
.
amp_list
)
self
.
dtype_check
(
main_prog
,
to_fp16_var_names
)
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
# cast parameters to fp16
if
exec_mode
==
ExecutionModeFull
.
IPU_MIXED_PRECISION
:
paddle
.
static
.
amp
.
cast_parameters_to_fp16
(
paddle
.
CPUPlace
(),
main_prog
,
to_fp16_var_names
=
to_fp16_var_names
)
if
exec_mode
!=
ExecutionModeFull
.
CPU_FP32
:
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
False
)
if
exec_mode
==
ExecutionModeFull
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
self
.
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
set_attrs
(
self
):
self
.
num_ipus
=
1
self
.
enable_pipelining
=
False
self
.
enable_manual_shard
=
False
self
.
batches_per_step
=
1
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
# using fp32
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
3
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
# using fp16
with
paddle
.
static
.
amp
.
fp16_guard
():
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
6
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
# using fp32
x
=
paddle
.
static
.
nn
.
fc
(
x
,
size
=
10
)
loss
=
paddle
.
mean
(
x
)
self
.
fetch_list
=
[
loss
.
name
]
def
run_model
(
self
,
exec_mode
):
# cast model to fp16
if
self
.
is_fp16_mode
(
exec_mode
):
amp_list
=
paddle
.
static
.
amp
.
CustomOpLists
()
amp_list
.
unsupported_list
=
{}
to_fp16_var_names
=
paddle
.
static
.
amp
.
cast_model_to_fp16
(
self
.
main_prog
,
amp_list
,
use_fp16_guard
=
True
)
self
.
dtype_check
(
self
.
main_prog
,
to_fp16_var_names
)
if
self
.
is_ipu_mode
(
exec_mode
):
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
self
.
startup_prog
)
# cast parameters to fp16
if
exec_mode
==
IPUOpTest
.
ExecutionMode
.
IPU_FP16
:
paddle
.
static
.
amp
.
cast_parameters_to_fp16
(
paddle
.
CPUPlace
(),
self
.
main_prog
,
to_fp16_var_names
=
to_fp16_var_names
)
if
self
.
is_ipu_mode
(
exec_mode
):
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
False
,
num_ipus
=
self
.
num_ipus
,
enable_manual_shard
=
self
.
enable_manual_shard
)
ipu_strategy
.
set_pipelining_config
(
enable_pipelining
=
self
.
enable_pipelining
,
batches_per_step
=
self
.
batches_per_step
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
self
.
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
self
.
feed_list
,
self
.
fetch_list
)
else
:
program
=
self
.
main_prog
result
=
exe
.
run
(
program
,
feed
=
self
.
feed_fp32
,
fetch_list
=
self
.
fetch_list
)
self
.
output_dict
[
exec_mode
]
=
result
[
0
]
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestPipline
(
TestBase
):
@
IPUOpTest
.
static_graph
def
build_model
(
self
,
exec_mode
):
feed_shape
=
list
(
self
.
feed_shape
[
0
])
if
self
.
is_ipu_mode
(
exec_mode
):
feed_shape
[
0
]
=
1
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
feed_shape
,
dtype
=
'float32'
)
with
paddle
.
static
.
ipu_shard_guard
(
index
=
0
,
stage
=
0
):
# using fp32
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
3
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
with
paddle
.
static
.
ipu_shard_guard
(
index
=
1
,
stage
=
1
):
# using fp16
with
paddle
.
static
.
amp
.
fp16_guard
():
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
6
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
with
paddle
.
static
.
ipu_shard_guard
(
index
=
2
,
stage
=
2
):
# using fp32
x
=
paddle
.
static
.
nn
.
fc
(
x
,
size
=
10
)
loss
=
paddle
.
mean
(
x
)
self
.
fetch_list
=
[
loss
.
name
]
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
3
,
10
,
27
,
27
])
self
.
feed_fp32
=
{
"in_0"
:
data
.
astype
(
np
.
float32
)}
def
set_attrs
(
self
):
self
.
num_ipus
=
3
self
.
enable_pipelining
=
True
self
.
enable_manual_shard
=
True
self
.
batches_per_step
=
3
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionModeFull
:
if
mode
==
ExecutionModeFull
.
IPU_POPART_FP16
:
continue
if
mode
>
ExecutionModeFull
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
for
m
in
IPUOpTest
.
ExecutionMode
:
self
.
build_model
(
m
)
self
.
run_model
(
m
)
# skip check results
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ipu/test_mixed_precision_training_ipu.py
浏览文件 @
001dab0b
...
...
@@ -18,7 +18,7 @@ import numpy as np
import
paddle
import
paddle.static
import
paddle.nn.functional
as
F
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionModeFull
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -29,10 +29,7 @@ class TestBase(IPUOpTest):
self
.
set_training
()
self
.
set_data_feed
()
self
.
set_feed_attr
()
@
property
def
fp16_enabled
(
self
):
return
True
self
.
set_attrs
()
def
set_atol
(
self
):
self
.
atol
=
2e-6
...
...
@@ -47,104 +44,149 @@ class TestBase(IPUOpTest):
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
28
,
28
])
self
.
feed_fp32
=
{
"in_0"
:
data
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
"in_0"
:
data
.
astype
(
np
.
float16
)}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
def
set_attrs
(
self
):
self
.
num_ipus
=
1
self
.
enable_pipelining
=
False
self
.
enable_manual_shard
=
False
self
.
batches_per_step
=
1
def
dtype_check
(
self
,
program
,
to_fp16_var_names
):
block
=
program
.
global_block
()
assert
len
(
to_fp16_var_names
)
>
0
for
var_name
in
to_fp16_var_names
:
assert
(
block
.
var
(
var_name
).
dtype
,
paddle
.
float16
)
def
_test_base
(
self
,
exec_mode
):
generator
=
paddle
.
fluid
.
unique_name
.
UniqueNameGenerator
()
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
fluid
.
unique_name
.
guard
(
generator
):
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
# using fp32
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
3
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
# using fp16
with
paddle
.
static
.
amp
.
fp16_guard
():
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
6
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
# using fp32
x
=
paddle
.
static
.
nn
.
fc
(
x
,
size
=
10
)
loss
=
paddle
.
mean
(
x
)
# optimizer
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-2
)
optimizer
.
minimize
(
loss
,
startup_prog
)
fetch_list
=
[
loss
.
name
]
# cast model to fp16
if
exec_mode
==
ExecutionModeFull
.
IPU_MIXED_PRECISION
:
to_fp16_var_names
=
paddle
.
static
.
amp
.
cast_model_to_fp16
(
main_prog
,
self
.
amp_list
)
self
.
dtype_check
(
main_prog
,
to_fp16_var_names
)
if
exec_mode
==
ExecutionModeFull
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
# cast parameters to fp16
if
exec_mode
==
ExecutionModeFull
.
IPU_MIXED_PRECISION
:
paddle
.
static
.
amp
.
cast_parameters_to_fp16
(
paddle
.
CPUPlace
(),
main_prog
,
to_fp16_var_names
=
to_fp16_var_names
)
if
exec_mode
!=
ExecutionModeFull
.
CPU_FP32
:
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionModeFull
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
self
.
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
result
=
[]
for
i
in
range
(
self
.
epoch
):
out
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
result
.
append
(
out
)
return
np
.
array
(
result
)
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionModeFull
:
if
mode
==
ExecutionModeFull
.
IPU_POPART_FP16
:
continue
if
mode
>
ExecutionModeFull
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
# using fp32
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
3
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
# using fp16
with
paddle
.
static
.
amp
.
fp16_guard
():
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
6
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
# using fp32
x
=
paddle
.
static
.
nn
.
fc
(
x
,
size
=
10
)
loss
=
paddle
.
mean
(
x
)
# optimizer
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-2
)
optimizer
.
minimize
(
loss
,
self
.
startup_prog
)
self
.
fetch_list
=
[
loss
.
name
]
def
run_model
(
self
,
exec_mode
):
# cast model to fp16
if
self
.
is_fp16_mode
(
exec_mode
):
amp_list
=
paddle
.
static
.
amp
.
CustomOpLists
()
amp_list
.
unsupported_list
=
{}
to_fp16_var_names
=
paddle
.
static
.
amp
.
cast_model_to_fp16
(
self
.
main_prog
,
amp_list
)
self
.
dtype_check
(
self
.
main_prog
,
to_fp16_var_names
)
if
self
.
is_ipu_mode
(
exec_mode
):
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
self
.
startup_prog
)
# cast parameters to fp16
if
self
.
is_fp16_mode
(
exec_mode
):
paddle
.
static
.
amp
.
cast_parameters_to_fp16
(
paddle
.
CPUPlace
(),
self
.
main_prog
,
to_fp16_var_names
=
to_fp16_var_names
)
if
self
.
is_ipu_mode
(
exec_mode
):
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
,
num_ipus
=
self
.
num_ipus
,
enable_manual_shard
=
self
.
enable_manual_shard
)
ipu_strategy
.
set_pipelining_config
(
enable_pipelining
=
self
.
enable_pipelining
,
batches_per_step
=
self
.
batches_per_step
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
self
.
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
self
.
feed_list
,
self
.
fetch_list
)
else
:
program
=
self
.
main_prog
result
=
[]
for
_
in
range
(
self
.
epoch
):
out
=
exe
.
run
(
program
,
feed
=
self
.
feed_fp32
,
fetch_list
=
self
.
fetch_list
)
result
.
append
(
out
)
self
.
output_dict
[
exec_mode
]
=
result
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestPipline
(
TestBase
):
@
IPUOpTest
.
static_graph
def
build_model
(
self
,
exec_mode
):
feed_shape
=
list
(
self
.
feed_shape
[
0
])
if
self
.
is_ipu_mode
(
exec_mode
):
feed_shape
[
0
]
=
1
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
feed_shape
,
dtype
=
'float32'
)
with
paddle
.
static
.
ipu_shard_guard
(
index
=
0
,
stage
=
0
):
# using fp32
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
3
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
with
paddle
.
static
.
ipu_shard_guard
(
index
=
1
,
stage
=
1
):
# using fp16
with
paddle
.
static
.
amp
.
fp16_guard
():
x
=
paddle
.
static
.
nn
.
conv2d
(
input
=
x
,
num_filters
=
6
,
filter_size
=
3
)
x
=
paddle
.
static
.
nn
.
batch_norm
(
x
,
act
=
'relu'
)
x
=
F
.
max_pool2d
(
x
,
kernel_size
=
2
,
stride
=
2
)
with
paddle
.
static
.
ipu_shard_guard
(
index
=
2
,
stage
=
2
):
# using fp32
x
=
paddle
.
static
.
nn
.
fc
(
x
,
size
=
10
)
loss
=
paddle
.
mean
(
x
)
# optimizer
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-2
)
optimizer
.
minimize
(
loss
,
self
.
startup_prog
)
self
.
fetch_list
=
[
loss
.
name
]
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
5
,
10
,
27
,
27
])
self
.
feed_fp32
=
{
"in_0"
:
data
.
astype
(
np
.
float32
)}
def
set_attrs
(
self
):
self
.
num_ipus
=
3
self
.
enable_pipelining
=
True
self
.
enable_manual_shard
=
True
self
.
batches_per_step
=
5
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
self
.
build_model
(
m
)
self
.
run_model
(
m
)
# skip check results
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ipu/test_mul_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
x
=
np
.
random
.
uniform
(
size
=
[
2
,
5
])
y
=
np
.
random
.
uniform
(
size
=
[
5
,
3
])
...
...
@@ -51,63 +47,24 @@ class TestBase(IPUOpTest):
"y_num_col_dims"
:
1
,
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
mul
(
x
,
y
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
mul
(
x
,
y
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_not_equal_op_ipu.py
0 → 100644
浏览文件 @
001dab0b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestBase
(
IPUOpTest
):
def
setUp
(
self
):
self
.
set_atol
()
self
.
set_training
()
self
.
set_data_feed
()
self
.
set_feed_attr
()
self
.
set_op_attrs
()
def
set_data_feed
(
self
):
x
=
np
.
ones
([
1
,
10
])
y
=
np
.
zeros
([
1
,
10
])
self
.
feed_fp32
=
{
"x"
:
x
.
astype
(
np
.
float32
),
"y"
:
y
.
astype
(
np
.
float32
),
}
self
.
feed_fp16
=
{
"x"
:
x
.
astype
(
np
.
float16
),
"y"
:
y
.
astype
(
np
.
float16
),
}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
not_equal
(
x
,
y
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
def
set_data_feed
(
self
):
x
=
np
.
ones
([
1
,
10
])
y
=
np
.
ones
([
1
,
10
])
self
.
feed_fp32
=
{
"x"
:
x
.
astype
(
np
.
float32
),
"y"
:
y
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
"x"
:
x
.
astype
(
np
.
float16
),
"y"
:
y
.
astype
(
np
.
float16
)}
class
TestCase2
(
TestBase
):
def
set_data_feed
(
self
):
x
=
np
.
ones
([
1
,
10
])
y
=
np
.
arange
(
0
,
10
).
reshape
([
1
,
10
])
self
.
feed_fp32
=
{
"x"
:
x
.
astype
(
np
.
float32
),
"y"
:
y
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
"x"
:
x
.
astype
(
np
.
float16
),
"y"
:
y
.
astype
(
np
.
float16
)}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestScalar
(
IPUOpTest
):
def
setUp
(
self
):
self
.
set_atol
()
self
.
set_training
()
self
.
set_data_feed
()
self
.
set_feed_attr
()
self
.
set_op_attrs
()
def
set_data_feed
(
self
):
x
=
np
.
ones
([
1
,
10
])
y
=
0.5
self
.
feed_fp32
=
{
"x"
:
x
.
astype
(
np
.
float32
),
}
self
.
feed_fp16
=
{
"x"
:
x
.
astype
(
np
.
float16
),
}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
(
x
!=
0.5
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_one_hot_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,74 +30,34 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data1
=
np
.
array
([[
1
],
[
1
],
[
3
],
[
0
]])
self
.
feed
=
{
'x'
:
data1
.
astype
(
np
.
int32
)}
self
.
feed_fp32
=
{
'x'
:
data1
.
astype
(
np
.
int32
)}
self
.
feed
_fp16
=
{
'x'
:
data1
.
astype
(
np
.
int32
)}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
.
keys
())
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
_fp32
.
keys
())
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"depth"
:
4
,
"allow_out_of_range"
:
False
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'int32'
)
out
=
paddle
.
fluid
.
layers
.
one_hot
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
(
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
):
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'int32'
)
out
=
paddle
.
fluid
.
layers
.
one_hot
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
@
unittest
.
skip
(
'does not support allow_out_of_range=True'
)
...
...
python/paddle/fluid/tests/unittests/ipu/test_one_hot_v2_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,74 +30,34 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data1
=
np
.
array
([[
1
],
[
1
],
[
3
],
[
0
]])
self
.
feed
=
{
'x'
:
data1
.
astype
(
np
.
int32
)}
self
.
feed_fp32
=
{
'x'
:
data1
.
astype
(
np
.
int32
)}
self
.
feed
_fp16
=
{
'x'
:
data1
.
astype
(
np
.
int32
)}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
.
keys
())
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
_fp32
.
keys
())
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"depth"
:
4
,
"allow_out_of_range"
:
False
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'int32'
)
out
=
paddle
.
fluid
.
input
.
one_hot
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
(
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
):
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'int32'
)
out
=
paddle
.
fluid
.
input
.
one_hot
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
@
unittest
.
skip
(
'does not support allow_out_of_range=True'
)
...
...
python/paddle/fluid/tests/unittests/ipu/test_optimizer_ipu.py
浏览文件 @
001dab0b
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
paddle
...
...
python/paddle/fluid/tests/unittests/ipu/test_pool_avg_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
])
self
.
feed_fp32
=
{
'in_0'
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -56,59 +52,22 @@ class TestBase(IPUOpTest):
"data_format"
:
'NCHW'
,
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pool2d
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pool2d
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
@@ -180,5 +139,21 @@ class TestCase6(TestBase):
self
.
attrs
[
'exclusive'
]
=
False
class
TestAdaptive
(
TestBase
):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"pool_size"
:
1
,
"pool_type"
:
'avg'
,
"require_index"
:
False
}
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
adaptive_pool2d
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_pool_max_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
])
self
.
feed_fp32
=
{
'in_0'
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -56,59 +52,22 @@ class TestBase(IPUOpTest):
"data_format"
:
'NCHW'
,
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pool2d
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pool2d
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
@@ -179,5 +138,21 @@ class TestCase6(TestBase):
self
.
attrs
[
'exclusive'
]
=
False
class
TestAdaptive
(
TestBase
):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"pool_size"
:
1
,
"pool_type"
:
'max'
,
"require_index"
:
False
}
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
adaptive_pool2d
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_pow_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
2
,
2
])
self
.
feed_fp32
=
{
"x"
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -47,59 +43,22 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"factor"
:
2.0
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pow
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pow
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
@@ -119,54 +78,14 @@ class TestCase1(TestBase):
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
factor
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pow
(
x
,
factor
=
factor
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
factor
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pow
(
x
,
factor
=
factor
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ipu/test_print_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -30,82 +30,48 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
False
def
set_data_feed
(
self
):
self
.
feed
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'float32'
),
}
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'float32'
)
self
.
feed_fp32
=
{
"x"
:
data
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
"x"
:
data
.
astype
(
np
.
float16
)
}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
.
keys
())
self
.
feed_dtype
=
[
x
.
dtype
for
x
in
self
.
feed
.
values
()]
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
_fp32
.
keys
())
self
.
feed_dtype
=
[
x
.
dtype
for
x
in
self
.
feed
_fp32
.
values
()]
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
def
_test_base
(
self
,
run_ipu
=
True
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
out
=
paddle
.
fluid
.
layers
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
)
out
=
paddle
.
fluid
.
layers
.
Print
(
out
,
**
self
.
attrs
)
if
self
.
is_training
:
loss
=
paddle
.
mean
(
out
)
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-2
)
adam
.
minimize
(
loss
)
fetch_list
=
[
loss
.
name
]
else
:
fetch_list
=
[
out
.
name
]
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
if
self
.
is_training
:
result
=
[]
for
_
in
range
(
self
.
epoch
):
loss_res
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
result
.
append
(
loss_res
[
0
])
return
np
.
array
(
result
)
else
:
result
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
out
=
paddle
.
fluid
.
layers
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
)
out
=
paddle
.
fluid
.
layers
.
Print
(
out
,
**
self
.
attrs
)
if
self
.
is_training
:
loss
=
paddle
.
mean
(
out
)
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-2
)
adam
.
minimize
(
loss
)
self
.
fetch_list
=
[
loss
.
name
]
else
:
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
res0
=
self
.
_test_base
(
False
)
res1
=
self
.
_test_base
(
True
)
self
.
assertTrue
(
np
.
allclose
(
res0
.
flatten
(),
res1
.
flatten
(),
atol
=
self
.
atol
))
self
.
assertTrue
(
res0
.
shape
==
res1
.
shape
)
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_reduce_x_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -28,10 +28,6 @@ class TestMean(IPUOpTest):
self
.
set_training
()
self
.
set_test_op
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_test_op
(
self
):
self
.
op
=
paddle
.
fluid
.
layers
.
reduce_mean
...
...
@@ -40,59 +36,22 @@ class TestMean(IPUOpTest):
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
self
.
feed_dtype
=
[
x
.
dtype
for
x
in
self
.
feed_fp32
.
values
()]
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
self
.
op
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
self
.
op
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
self
.
check
(
output_dict
)
def
run_test_base
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
def
set_data_feed0
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
2
,
4
])
...
...
python/paddle/fluid/tests/unittests/ipu/test_reshape_inplace_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
])
self
.
feed_fp32
=
{
"x"
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -50,60 +46,23 @@ class TestBase(IPUOpTest):
"inplace"
:
True
,
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
add
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x
,
x
)
out
=
paddle
.
fluid
.
layers
.
reshape
(
add
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
)
self
.
check
(
output_dict
,
check_shape
=
True
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
add
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x
,
x
)
out
=
paddle
.
fluid
.
layers
.
reshape
(
add
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_reshape_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
2
,
4
,
6
])
self
.
feed_fp32
=
{
"in_0"
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -48,59 +44,22 @@ class TestBase(IPUOpTest):
self
.
attrs
[
'shape'
]
=
[
6
,
8
]
self
.
attrs
[
'inplace'
]
=
False
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
reshape
(
x
=
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
)
self
.
check
(
output_dict
,
check_shape
=
True
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
reshape
(
x
=
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_scale_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -51,59 +51,22 @@ class TestBase(IPUOpTest):
"bias_after_scale"
:
True
,
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
scale
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
scale
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
@@ -155,54 +118,14 @@ class TestCase5(TestBase):
"bias_after_scale"
:
True
,
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
scale
(
x
,
scale
=
y
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
scale
(
x
,
scale
=
y
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ipu/test_scaled_optimizer_state_ipu.py
0 → 100644
浏览文件 @
001dab0b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
unittest
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestBase
(
IPUOpTest
):
def
setUp
(
self
):
self
.
set_atol
()
self
.
set_training
()
self
.
set_data_feed
()
self
.
set_feed_attr
()
self
.
set_attrs
()
def
set_training
(
self
):
self
.
is_training
=
True
self
.
epoch
=
100
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
]).
astype
(
'float32'
)
self
.
feed_fp32
=
{
"image"
:
data
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
"image"
:
data
.
astype
(
np
.
float16
)}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
self
.
feed_dtype
=
[
x
.
dtype
for
x
in
self
.
feed_fp32
.
values
()]
def
set_attrs
(
self
):
self
.
attrs
=
{
"optimizer"
:
'lamb'
,
"weight_decay"
:
0.0
,
"scaled_optimizer_state"
:
True
}
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
image
=
paddle
.
static
.
data
(
name
=
'image'
,
shape
=
[
1
,
3
,
10
,
10
],
dtype
=
'float32'
)
conv1
=
paddle
.
static
.
nn
.
conv2d
(
image
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
loss
=
paddle
.
mean
(
conv1
)
weight_decay
=
self
.
attrs
[
'weight_decay'
]
opt
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-1
,
weight_decay
=
weight_decay
)
if
self
.
attrs
[
'optimizer'
]
==
'lamb'
:
opt
=
paddle
.
optimizer
.
Lamb
(
learning_rate
=
1e-1
,
lamb_weight_decay
=
weight_decay
)
opt
.
minimize
(
loss
)
self
.
feed_list
=
[
image
.
name
]
self
.
fetch_list
=
[
loss
.
name
]
def
run_model
(
self
,
exec_mode
):
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
self
.
is_ipu_mode
(
exec_mode
):
if
"use_no_bias_optimizer"
in
self
.
attrs
.
keys
():
ipu_strategy
.
set_options
({
"use_no_bias_optimizer"
:
self
.
attrs
[
"use_no_bias_optimizer"
]
})
if
"scaled_optimizer_state"
in
self
.
attrs
.
keys
():
ipu_strategy
.
set_options
({
"scaled_optimizer_state"
:
self
.
attrs
[
"scaled_optimizer_state"
]
})
self
.
run_op_test
(
exec_mode
,
ipu_strategy
=
ipu_strategy
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestScaledAdam
(
TestBase
):
def
set_attrs
(
self
):
self
.
attrs
=
{
"optimizer"
:
'adam'
,
"weight_decay"
:
0.0
,
"scaled_optimizer_state"
:
True
}
def
set_atol
(
self
):
super
().
set_atol
()
self
.
atol
=
1e-5
self
.
rtol
=
1e-5
@
unittest
.
skip
(
'cpu do not support AdamNoBias'
)
class
TestScaledAdamNoBias
(
TestBase
):
def
set_attrs
(
self
):
self
.
attrs
=
{
"optimizer"
:
'adam'
,
"weight_decay"
:
0.0
,
"use_no_bias_optimizer"
:
True
,
"scaled_optimizer_state"
:
True
}
@
unittest
.
skip
(
'cpu do not support LambNoBias'
)
class
TestScaledLambNoBias
(
TestBase
):
def
set_attrs
(
self
):
self
.
attrs
=
{
"optimizer"
:
'lamb'
,
"weight_decay"
:
0.0
,
"use_no_bias_optimizer"
:
True
,
"scaled_optimizer_state"
:
True
}
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_set_batch_size_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_atol
(
self
):
self
.
atol
=
3e-6
self
.
rtol
=
1e-5
...
...
@@ -52,67 +48,32 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
conv1
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
conv2
=
paddle
.
static
.
nn
.
conv2d
(
conv1
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
conv3
=
paddle
.
static
.
nn
.
conv2d
(
conv2
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
conv4
=
paddle
.
static
.
nn
.
conv2d
(
conv3
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
fetch_list
=
[
conv4
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
,
micro_batch_size
=
2
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
conv1
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
conv2
=
paddle
.
static
.
nn
.
conv2d
(
conv1
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
conv3
=
paddle
.
static
.
nn
.
conv2d
(
conv2
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
conv4
=
paddle
.
static
.
nn
.
conv2d
(
conv3
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
self
.
fetch_list
=
[
conv4
.
name
]
def
run_model
(
self
,
exec_mode
):
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
,
micro_batch_size
=
2
)
self
.
run_op_test
(
exec_mode
,
ipu_strategy
)
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ipu/test_slice_op_ipu.py
浏览文件 @
001dab0b
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
4
,
5
,
6
])
self
.
feed_fp32
=
{
"in_0"
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -51,59 +47,22 @@ class TestBase(IPUOpTest):
"ends"
:
[
3
,
2
,
4
],
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
slice
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
)
self
.
check
(
output_dict
,
check_shape
=
True
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
slice
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
@@ -135,54 +94,17 @@ class TestCase2(TestBase):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"axes"
:
[
0
,
1
,
2
]}
def
_test_base
(
self
,
run_ipu
=
True
):
scope
=
fluid
.
core
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
fluid
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
starts
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'int32'
)
ends
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
2
],
shape
=
self
.
feed_shape
[
2
],
dtype
=
'int32'
)
out
=
paddle
.
fluid
.
layers
.
slice
(
x
,
starts
=
starts
,
ends
=
ends
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
result
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
pass
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
starts
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'int32'
)
ends
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
2
],
shape
=
self
.
feed_shape
[
2
],
dtype
=
'int32'
)
out
=
paddle
.
fluid
.
layers
.
slice
(
x
,
starts
=
starts
,
ends
=
ends
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录