-
由 OccupyMars2025 提交于
* add sparse reshape * change the dtype in all test cases to int64 * just one test case * modify comments * Update test_sparse_reshape_op.py * chang the type of "shape" from vector<int64_t> to IntArray * check whether sp_out.to_dense() is the cause of error * print sp_out * Update reshape_kernel.cc * use numpy to generate the equal paddle tensor * just check dense_tensor.numpy() * check cpu and cuda versions * Update test_sparse_reshape_op.py * supply all test cases for cpu forward coo kernel * test forward coo cuda kernel * change configuration of cuda kernel * keep only one test case * test coo cpu kernel (forward and backward) * row major or column major ??? * test cuda coo forward kernel * complete declaration and registration * Update __init__.py * rebuild * retrigger CI * add cudaMalloc and cudaMemcpy in ReshapeCooKernel and change back to row major order in a cuda dense tensor * midify minor error * test only cpu coo forward kernel * add all test cases for coo forward kernel (both cpu and gpu) * test all forward kernels (coo, csr; cpu, gpu) * add all test cases for all kinds of kernels * just retrigger CI * Update sparse_ops.yaml * Update sparse_ops.yaml * Update sparse_ops.yaml * resolve conflicts * Update sparse_ops.yaml * don't specify tensor place * new shape has -1 or 0 in it * Update unary_grad_kernel.h * correct lvalue error * code style * Update sparse_backward.yaml * Update sparse_ops.yaml * Update unary_kernel.h * Update unary.py * Update sparse_backward.yaml * Update unary.py * code style * code style * code style * Update unary.py * specify tensor place explicitly * do not use numpy array * use numpy array in unit test again * modify example code in docstring
abb38136