1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from collections import defaultdict
from contextlib import contextmanager
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
from . import framework
from . import layers
from . import unique_name
from .backward import append_backward
from .clip import append_gradient_clip_ops, error_clip_callback
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
from .layers import ops
from .regularizer import append_regularization_ops
__all__ = [
'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
'LarsMomentumOptimizer'
]
class Optimizer(object):
"""Optimizer Base class.
Define the common interface of an optimizer.
User should not use this class directly,
but need to use one of it's implementation.
"""
def __init__(self, learning_rate, regularization=None, name=None):
if not isinstance(learning_rate, float) and \
not isinstance(learning_rate, framework.Variable):
raise TypeError("learning rate should be float or Variable")
self._name = name
self.regularization = regularization
self._learning_rate = learning_rate
# the learning rate type should be inferenced from loss
self._dtype = None
# each program should have a independent learning rate
# program -> Variable(learning_rate)
self._learning_rate_map = dict()
if isinstance(self._learning_rate, framework.Variable):
self._learning_rate_map[framework.default_main_program(
)] = self._learning_rate
# Dictionary of accumulators. Some optimizer subclasses need to
# allocate and manage extra variables associated with the parameters
# to train. These variables are called accumulators.
# {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
self._accumulators = defaultdict(lambda: dict())
self.helper = None
def _create_global_learning_rate(self):
lr = self._global_learning_rate()
if isinstance(lr, framework.Variable):
return
else:
if not isinstance(self._learning_rate, float):
raise TypeError(
"learning rate variable is create outside optimizer,"
"can not create new learning rate variable for new program")
# create learning rate in the current main program
self._learning_rate_map[framework.default_main_program(
)] = layers.create_global_var(
name=unique_name.generate("learning_rate"),
shape=[1],
value=float(self._learning_rate),
dtype='float32' if self._dtype is None else self._dtype,
persistable=True)
def _global_learning_rate(self, program=None):
"""
get global decayed learning rate
:return:
"""
if program is None:
program = framework.default_main_program()
return self._learning_rate_map.get(program, None)
def _append_optimize_op(self, block, param_and_grad):
""" append optimize operator to block and return all the added optimize_op
"""
raise NotImplementedError()
def _create_param_lr(self, param_and_grad):
# create learning rate variable for every parameter
param = param_and_grad[0]
param_lr = param.optimize_attr['learning_rate']
if type(param_lr) == Variable:
return param_lr
else:
if param_lr == 1.0:
return self._global_learning_rate()
else:
with default_main_program()._lr_schedule_guard(
is_with_opt=True), framework.name_scope(
'scale_with_param_lr'):
return self._global_learning_rate() * param_lr
def _create_accumulators(self, block, parameters):
"""Create all accumulators needed by the parameters
Args:
block: the block in which the loss variable is present
parameters: list of parameter variables for the optimizer
"""
pass
def _finish_update(self, block, parameters_and_grads):
"""Finish any custom updates needed
before completing an optimization step
Args:
block: the block in which the loss variable is present
parameters: list of parameter variables for the optimizer
Returns:
None
"""
pass
def _add_accumulator(self,
name,
param,
dtype=None,
fill_value=0.0,
shape=None):
"""Utility function to add an accumulator for a parameter
Args:
block: the block in which the loss variable is present
name: name of the accumulator
param: parameter variable for which accumulator is to be added
dtype: data type of the accumulator variable
fill_value: value to initialize the accumulator variable
"""
if self._name is not None:
name = self._name + "_" + name
if (name in self._accumulators and
param.name in self._accumulators[name]):
raise Exception("Accumulator {} already exists for parameter {}".
format(name, param.name))
if shape == None:
shape = param.shape
assert isinstance(self.helper, LayerHelper)
var = self.helper.create_global_variable(
name=unique_name.generate(name),
persistable=True,
dtype=dtype or param.dtype,
type=param.type,
shape=shape)
self.helper.set_variable_initializer(
var, initializer=Constant(value=float(fill_value)))
self._accumulators[name][param.name] = var
return var
def _get_accumulator(self, name, param):
"""Utility function to fetch an accumulator for a parameter
Args:
name: name of the accumulator
param: parameter variable for which accumulator is to be fetched
Returns:
accumulator variable for the parameter
"""
if self._name is not None:
name = self._name + "_" + name
if (name not in self._accumulators or
param.name not in self._accumulators[name]):
raise Exception("Accumulator {} does not exist for parameter {}".
format(name, param.name))
return self._accumulators[name][param.name]
def _create_optimization_pass(self,
parameters_and_grads,
loss,
startup_program=None):
"""Add optimization operators to update gradients to variables.
Args:
loss(Variable): the target that this optimization is for.
parameters_and_grads(list(tuple(Variable, Variable))):
a list of (variable, gradient) pair to update.
Returns:
return_op_list: a list of operators that will complete one step of
optimization. This will include parameter update ops, global step
update ops and any other custom ops required by subclasses to manage
their internal state.
"""
# This is a default implementation of create_optimization_pass that
# can be shared by most optimizers. This implementation assumes that
# the subclass will implement the _append_optimize_op method and the
# _initialize_tensors method. The subclass can extend the
# _create_accumulators method if it needs to create accumulators
# for parameters and extend _finish_update method to add custom ops.
# Create any accumulators
program = loss.block.program
self._dtype = loss.dtype
with program_guard(program, startup_program):
global_block = framework.default_main_program().global_block()
start = len(global_block.ops)
self.helper = LayerHelper(self.__class__.__name__)
self._create_accumulators(loss.block,
[p[0] for p in parameters_and_grads])
self._create_global_learning_rate()
optimize_ops = []
for param_and_grad in parameters_and_grads:
if param_and_grad[1] is None:
continue
with param_and_grad[0].block.program._optimized_guard(
param_and_grad), name_scope("optimizer"):
if param_and_grad[0].trainable is True:
optimize_op = self._append_optimize_op(loss.block,
param_and_grad)
optimize_ops.append(optimize_op)
# Get custom finish ops for subclasses
# FIXME: Need to fix this once we figure out how to handle dependencies
self._finish_update(loss.block, parameters_and_grads)
end = len(global_block.ops)
return global_block._slice_ops(start, end)
def _process_distribute_lookuptable(self, param_grads, loss,
startup_program):
"""
Because distribute lookup table only support SGD optimizer for now, not support
other optimizer and regularization, so we should find the table parameter out,
and avoid to add regularization and other op for it, and add sgd optimize op
for it independently.
:param param_grads(list((Var, Var))): list of (param, grad) pair.
:param loss: the loss variable.
:param startup_program: the startup program
"""
program = loss.block.program
table_name = find_distributed_lookup_table(program)
table_param = None
table_grad = None
new_param_grads = []
for p, g in param_grads:
if p.name == table_name:
if table_param is not None:
raise RuntimeError(
"multi dist table var found, only support one now!")
table_param = p
table_grad = g
else:
new_param_grads.append((p, g))
sgd_op = None
if table_param is not None:
with program_guard(program, startup_program):
param_and_grad = [table_param, table_grad]
with table_param.block.program._optimized_guard(param_and_grad), \
framework.name_scope("optimizer"):
self._create_global_learning_rate()
# create the optimize op
sgd_op = loss.block.append_op(
type='sgd',
inputs={
"Param": table_param,
"Grad": table_grad,
"LearningRate":
self._create_param_lr(param_and_grad)
},
outputs={"ParamOut": param_and_grad[0]})
return new_param_grads, (table_param, table_grad), sgd_op
def minimize(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
"""Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `append_backward()` and
`create_optimization_pass()` into one.
"""
params_grads = append_backward(loss, parameter_list, no_grad_set,
[error_clip_callback])
params_grads = sorted(params_grads, key=lambda x: x[0].name)
params_grads, table_param_and_grad, table_optimize_op = \
self._process_distribute_lookuptable(params_grads, loss, startup_program)
params_grads = append_gradient_clip_ops(params_grads)
# Add regularization if any
params_grads = append_regularization_ops(params_grads,
self.regularization)
optimize_ops = self._create_optimization_pass(params_grads, loss,
startup_program)
if table_optimize_op is not None:
optimize_ops.append(table_optimize_op)
params_grads.append(table_param_and_grad)
return optimize_ops, params_grads
class SGDOptimizer(Optimizer):
"""
Optimizer of the stochastic gradient descent algorithm.
.. math::
param\_out = param - learning\_rate * grad
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
sgd_optimizer.minimize(cost)
"""
def __init__(self, learning_rate, regularization=None, name=None):
assert learning_rate is not None
super(SGDOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
self.type = "sgd"
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
# create the optimize op
sgd_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"LearningRate": self._create_param_lr(param_and_grad)
},
outputs={"ParamOut": param_and_grad[0]})
return sgd_op
class MomentumOptimizer(Optimizer):
"""
Simple Momentum optimizer with velocity state
This optimizer has a flag for Nestrov Momentum.
The update equations are as follows:
.. math::
& velocity = mu * velocity + gradient
& if (use\_nesterov):
&\quad param = param - (gradient + mu * velocity) * learning\_rate
& else:
&\quad param = param - learning\_rate * velocity
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
momentum (float): momentum factor
use_nesterov (bool): enables Nesterov momentum
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
optimizer.minimize(cost)
"""
_velocity_acc_str = "velocity"
def __init__(self,
learning_rate,
momentum,
use_nesterov=False,
regularization=None,
name=None):
assert learning_rate is not None
assert momentum is not None
super(MomentumOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
self.type = "momentum"
self._momentum = momentum
self._use_nesterov = bool(use_nesterov)
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
for p in parameters:
self._add_accumulator(self._velocity_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
velocity_acc = self._get_accumulator(self._velocity_acc_str,
param_and_grad[0])
# create the momentum optimize op
momentum_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"Velocity": velocity_acc,
"LearningRate": self._create_param_lr(param_and_grad)
},
outputs={
"ParamOut": param_and_grad[0],
"VelocityOut": velocity_acc
},
attrs={"mu": self._momentum,
"use_nesterov": self._use_nesterov})
return momentum_op
class LarsMomentumOptimizer(Optimizer):
"""
Momentum optimizer with LARS support
The update equations are as follows:
.. math::
& local\_learning\_rate = learning\_rate * lars\_coeff * \\
\\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}
& velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)
& param = param - velocity
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
momentum (float): momentum factor
lars_coeff (float): defines how much we trust the layer to change its weights.
lars_weight_decay (float): weight decay coefficient for decaying using LARS.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
optimizer.minimize(cost)
"""
_velocity_acc_str = "velocity"
def __init__(self,
learning_rate,
momentum,
lars_coeff=0.001,
lars_weight_decay=0.0005,
regularization=None,
name=None):
assert learning_rate is not None
assert momentum is not None
super(LarsMomentumOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
self.type = "lars_momentum"
self._momentum = momentum
self._lars_coeff = float(lars_coeff)
self._lars_weight_decay = float(lars_weight_decay)
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
for p in parameters:
self._add_accumulator(self._velocity_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
velocity_acc = self._get_accumulator(self._velocity_acc_str,
param_and_grad[0])
# create the momentum optimize op
momentum_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"Velocity": velocity_acc,
"LearningRate": self._create_param_lr(param_and_grad)
},
outputs={
"ParamOut": param_and_grad[0],
"VelocityOut": velocity_acc
},
attrs={
"mu": self._momentum,
"lars_coeff": self._lars_coeff,
"lars_weight_decay": self._lars_weight_decay
})
return momentum_op
class AdagradOptimizer(Optimizer):
"""
**Adaptive Gradient Algorithm (Adagrad)**
The update is done as follows:
.. math::
moment\_out &= moment + grad * grad
param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have the epsilon attribute. It is added here in our implementation
as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
for numerical stability to avoid the division by zero error.
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
epsilon (float): a small float value for numerical stability.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
optimizer.minimize(cost)
"""
_moment_acc_str = "moment"
def __init__(self,
learning_rate,
epsilon=1.0e-6,
regularization=None,
name=None):
assert learning_rate is not None
assert epsilon is not None
super(AdagradOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
self.type = "adagrad"
self._epsilon = epsilon
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
for p in parameters:
self._add_accumulator(self._moment_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
moment_acc = self._get_accumulator(self._moment_acc_str,
param_and_grad[0])
# Create the adagrad optimizer op
adagrad_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"Moment": moment_acc,
"LearningRate": self._create_param_lr(param_and_grad)
},
outputs={"ParamOut": param_and_grad[0],
"MomentOut": moment_acc},
attrs={"epsilon": self._epsilon})
return adagrad_op
class AdamOptimizer(Optimizer):
"""
This implements the Adam optimizer from Section 2 of the Adam
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
Adam updates:
.. math::
t & = t + 1
moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad
moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad
learning\_rate & = learning\_rate * \\
\\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}
param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
beta1 (float): The exponential decay rate for the 1st moment estimates.
beta2 (float): The exponential decay rate for the 2nd moment estimates.
epsilon (float): a small float value for numerical stability.
regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
the accumulators are updated at every step. Every element of the two moving-average is updated
in both dense mode and sparse mode. If the size of parameter is very large, then the update
may be very slow. The lazy mode only update the element that has gradient is the current
mini-batch, so it will be much more faster. But this mode has different semantics with the
original Adam algorithm and may lead to different result.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.Adam(learning_rate=0.2)
optimizer.minimize(cost)
"""
_moment1_acc_str = "moment1"
_moment2_acc_str = "moment2"
_beta1_pow_acc_str = "beta1_pow_acc"
_beta2_pow_acc_str = "beta2_pow_acc"
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
regularization=None,
name=None,
lazy_mode=False):
assert learning_rate is not None
assert beta1 is not None
assert beta2 is not None
assert epsilon is not None
super(AdamOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
self.type = "adam"
self._beta1 = beta1
self._beta2 = beta2
self._epsilon = epsilon
self._lazy_mode = lazy_mode
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
# Create accumulator tensors for first and second moments
for p in parameters:
self._add_accumulator(self._moment1_acc_str, p)
self._add_accumulator(self._moment2_acc_str, p)
self._add_accumulator(
name=self._beta1_pow_acc_str,
param=p,
dtype='float32',
fill_value=self._beta1,
shape=[1])
self._add_accumulator(
name=self._beta2_pow_acc_str,
param=p,
dtype='float32',
fill_value=self._beta2,
shape=[1])
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
moment1 = self._get_accumulator(self._moment1_acc_str,
param_and_grad[0])
moment2 = self._get_accumulator(self._moment2_acc_str,
param_and_grad[0])
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
param_and_grad[0])
beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
param_and_grad[0])
# create the adam optimize op
adam_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"LearningRate": self._create_param_lr(param_and_grad),
"Moment1": moment1,
"Moment2": moment2,
"Beta1Pow": beta1_pow_acc,
"Beta2Pow": beta2_pow_acc
},
outputs={
"ParamOut": param_and_grad[0],
"Moment1Out": moment1,
"Moment2Out": moment2
},
attrs={
"beta1": self._beta1,
"beta2": self._beta2,
"epsilon": self._epsilon,
"lazy_mode": self._lazy_mode
})
return adam_op
def _finish_update(self, block, param_and_grads):
"""Update Beta1 and Beta2 Power accumulators
"""
assert isinstance(block, framework.Block)
main_block = block.program.global_block()
for param, grad in param_and_grads:
if grad is None:
continue
with param.block.program._optimized_guard(
[param, grad]), name_scope("optimizer"):
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
param)
beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
param)
main_block.append_op(
type="scale",
inputs={"X": beta1_pow_acc},
outputs={"Out": beta1_pow_acc},
attrs={"scale": self._beta1})
main_block.append_op(
type="scale",
inputs={"X": beta2_pow_acc},
outputs={"Out": beta2_pow_acc},
attrs={"scale": self._beta2})
class AdamaxOptimizer(Optimizer):
"""
We implement the Adamax optimizer from Section 7 of the Adam
paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
Adam algorithm based on the infinity norm.
Adamax updates:
.. math::
t & = t + 1
moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad
inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)
learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}
param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}
The original paper does not have an epsilon attribute.
However, it is added here for numerical stability to prevent the
division by 0 error.
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
beta1 (float): The exponential decay rate for the 1st moment estimates.
beta2 (float): The exponential decay rate for the 2nd moment estimates.
epsilon (float): a small float value for numerical stability.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
optimizer.minimize(cost)
Notes:
Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
"""
_moment_acc_str = "moment"
_inf_norm_acc_str = "inf_norm"
_beta1_pow_acc_str = "beta1_pow_acc"
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
regularization=None,
name=None):
assert learning_rate is not None
assert beta1 is not None
assert beta2 is not None
assert epsilon is not None
super(AdamaxOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
self.type = "adamax"
self._beta1 = beta1
self._beta2 = beta2
self._epsilon = epsilon
def _create_accumulators(self, block, parameters):
# Create accumulator tensors for first moment and infinity norm
for p in parameters:
self._add_accumulator(self._moment_acc_str, p)
self._add_accumulator(self._inf_norm_acc_str, p)
self._add_accumulator(
name=self._beta1_pow_acc_str,
param=p,
dtype='float32',
fill_value=self._beta1,
shape=[1])
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
inf_norm = self._get_accumulator(self._inf_norm_acc_str,
param_and_grad[0])
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
param_and_grad[0])
# create the adamax optimize op
adamax_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"LearningRate": self._create_param_lr(param_and_grad),
"Moment": moment,
"InfNorm": inf_norm,
"Beta1Pow": beta1_pow_acc
},
outputs={
"ParamOut": param_and_grad[0],
"MomentOut": moment,
"InfNormOut": inf_norm
},
attrs={
"beta1": self._beta1,
"beta2": self._beta2,
"epsilon": self._epsilon
})
return adamax_op
def _finish_update(self, block, parameters_and_grads):
"""Update Beta1 Power accumulator
"""
assert isinstance(block, framework.Block)
main_block = block.program.global_block()
for param, grad in parameters_and_grads:
if grad is None:
continue
with param.block.program._optimized_guard(
[param, grad]), name_scope('adamx'):
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
param)
main_block.append_op(
type="scale",
inputs={"X": beta1_pow_acc},
outputs={"Out": beta1_pow_acc},
attrs={"scale": self._beta1})
class DecayedAdagradOptimizer(Optimizer):
"""
**Decayed Adagrad Optimizer**
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
The update is done as follows:
.. math::
moment\_out & = decay * moment + (1 - decay) * grad * grad
param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
does not have an epsilon attribute. It is added here for numerical
stability to avoid the division by zero error.
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element.
decay (float): decay rate.
epsilon (float): a small float value for numerical stability.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
optimizer.minimize(cost)
Notes:
Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
"""
_moment_acc_str = "moment"
def __init__(self,
learning_rate,
decay=0.95,
epsilon=1.0e-6,
regularization=None,
name=None):
assert learning_rate is not None
assert decay is not None
assert epsilon is not None
super(DecayedAdagradOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
self.type = "decayed_adagrad"
self._decay = decay
self._epsilon = epsilon
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
for p in parameters:
self._add_accumulator(self._moment_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
moment_acc = self._get_accumulator(self._moment_acc_str,
param_and_grad[0])
# Create the decayed adagrad optimizer op
decayed_adagrad_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"Moment": moment_acc,
"LearningRate": self._create_param_lr(param_and_grad)
},
outputs={"ParamOut": param_and_grad[0],
"MomentOut": moment_acc},
attrs={"epsilon": self._epsilon})
return decayed_adagrad_op
class AdadeltaOptimizer(Optimizer):
"""
**Adadelta Optimizer**
Simple Adadelta optimizer with average squared grad state and
average squared update state.
The details of adadelta please refer to this
`ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
<http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.
.. math::
E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
E(g_t^2) + \\epsilon ) ) \\\\
E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2
Args:
learning_rate(float): global learning rate
rho(float): rho in equation
epsilon(float): epsilon in equation
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.Adadelta(
learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
_, params_grads = optimizer.minimize(cost)
Notes:
Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
"""
_avg_squared_grad_acc_str = "_avg_squared_grad"
_avg_squared_update_acc_str = "_avg_squared_update"
def __init__(self,
learning_rate,
epsilon=1.0e-6,
rho=0.95,
regularization=None,
name=None):
if learning_rate is None:
raise ValueError("learning_rate is not set.")
if epsilon is None:
raise ValueError("epsilon is not set.")
if rho is None:
raise ValueError("rho is not set.")
super(AdadeltaOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
self.type = "adadelta"
self._epsilon = epsilon
self._rho = rho
def _create_accumulators(self, block, parameters):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
for p in parameters:
self._add_accumulator(self._avg_squared_grad_acc_str, p)
self._add_accumulator(self._avg_squared_update_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
avg_squared_grad_acc = self._get_accumulator(
self._avg_squared_grad_acc_str, param_and_grad[0])
avg_squared_update_acc = self._get_accumulator(
self._avg_squared_update_acc_str, param_and_grad[0])
# Create the adadelta optimizer op
adadelta_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"AvgSquaredGrad": avg_squared_grad_acc,
"AvgSquaredUpdate": avg_squared_update_acc
},
outputs={
"ParamOut": param_and_grad[0],
"AvgSquaredGradOut": avg_squared_grad_acc,
"AvgSquaredUpdateOut": avg_squared_update_acc
},
attrs={"epsilon": self._epsilon,
"rho": self._rho})
return adadelta_op
class RMSPropOptimizer(Optimizer):
"""
Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
rate method. The original slides proposed RMSProp: Slide 29 of
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .
The original equation is as follows:
.. math::
r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)
The first equation calculates moving average of the squared gradient for
each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
In some cases, adding a momentum term :math: `\\beta` is beneficial.
In our implementation, Nesterov momentum is used:
.. math::
r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
\\epsilon}} \\nabla Q_{i}(w)
w & = w - v(w, t)
if centered is True:
.. math::
r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)
v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
\\epsilon}} \\nabla Q_{i}(w)
w & = w - v(w, t)
where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
smoothing term to avoid division by zero, usually set somewhere in range
from 1e-4 to 1e-8.
Args:
learning_rate(float): global learning rate.
rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
epsilon(float): :math: `\\epsilon` in equation is smoothing term to
avoid division by zero, set 1e-6 by default.
momentum(float): :math:`\\beta` in equation is the momentum term,
set 0.0 by default.
centered(bool): If True, gradients are normalized by the estimated variance of
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Raises:
ValueError: If learning_rate, rho, epsilon, momentum are None.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.RMSProp(0.0001)
_, params_grads = optimizer.minimize(cost)
"""
_momentum_acc_str = "momentum"
_mean_square_acc_str = "mean_square"
_mean_grad_acc_str = "mean_grad"
def __init__(self,
learning_rate,
rho=0.95,
epsilon=1.0e-6,
momentum=0.0,
centered=False,
regularization=None,
name=None):
super(RMSPropOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
if learning_rate is None:
raise ValueError("learning_rate is not set.")
if rho is None:
raise ValueError("rho is not set.")
if epsilon is None:
raise ValueError("epsilon is not set.")
if momentum is None:
raise ValueError("momentum is not set.")
self.type = "rmsprop"
self._rho = rho
self._epsilon = epsilon
self._momentum = momentum
self._centered = centered
def _create_accumulators(self, block, parameters):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
for p in parameters:
self._add_accumulator(self._momentum_acc_str, p)
self._add_accumulator(self._mean_square_acc_str, p)
self._add_accumulator(self._mean_grad_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
momentum_acc = self._get_accumulator(self._momentum_acc_str,
param_and_grad[0])
mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
param_and_grad[0])
mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
param_and_grad[0])
rmsprop_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"Moment": momentum_acc,
"MeanSquare": mean_square_acc,
"MeanGrad": mean_grad_acc,
"LearningRate": self._create_param_lr(param_and_grad),
},
outputs={
"ParamOut": param_and_grad[0],
"MomentOut": momentum_acc,
"MeanSquareOut": mean_square_acc,
"MeanGradOut": mean_grad_acc
},
attrs={
"epsilon": self._epsilon,
"decay": self._rho,
"momentum": self._momentum,
"centered": self._centered
})
return rmsprop_op
class FtrlOptimizer(Optimizer):
"""
FTRL (Follow The Regularized Leader) Optimizer.
The paper that proposed Follow The Regularized Leader (FTRL):
(https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)
.. math::
&new\_accum = squared\_accum + grad^2
&if (lr\_power == -0.5):
&\quad linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}
&else:
&\quad linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}
&x = l1 * sign(linear\_accum) - linear\_accum
&if (lr\_power == -0.5):
&\quad y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)
&\quad pre\_shrink = \\frac{x}{y}
&\quad param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)
&else:
&\quad y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)
&\quad pre\_shrink = \\frac{x}{y}
&\quad param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)
&squared\_accum += grad^2
Args:
learning_rate (float|Variable): global learning rate.
l1 (float):
l2 (float):
lr_power (float):
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Raises:
ValueError: If learning_rate, rho, epsilon, momentum are None.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.Ftrl(0.0001)
_, params_grads = optimizer.minimize(cost)
Notes:
Currently, FtrlOptimizer doesn't support sparse parameter optimization.
"""
_squared_acc_str = "squared"
_linear_acc_str = "linear"
def __init__(self,
learning_rate,
l1=0.0,
l2=0.0,
lr_power=-0.5,
regularization=None,
name=None):
super(FtrlOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
name=name)
if learning_rate is None:
raise ValueError("learning_rate is not set.")
self.type = "ftrl"
self._l1 = l1
self._l2 = l2
self._lr_power = lr_power
def _create_accumulators(self, block, parameters):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
for p in parameters:
self._add_accumulator(self._squared_acc_str, p)
self._add_accumulator(self._linear_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
squared_acc = self._get_accumulator(self._squared_acc_str,
param_and_grad[0])
linear_acc = self._get_accumulator(self._linear_acc_str,
param_and_grad[0])
ftrl_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"SquaredAccumulator": squared_acc,
"LinearAccumulator": linear_acc,
"LearningRate": self._create_param_lr(param_and_grad),
},
outputs={
"ParamOut": param_and_grad[0],
"SquaredAccumOut": squared_acc,
"LinearAccumOut": linear_acc
},
attrs={"l1": self._l1,
"l2": self._l1,
"lr_power": self._lr_power})
return ftrl_op
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
Adadelta = AdadeltaOptimizer
RMSProp = RMSPropOptimizer
Ftrl = FtrlOptimizer
LarsMomentum = LarsMomentumOptimizer
class ModelAverage(Optimizer):
"""Accumulate the average of parameters whtin sliding window. The average
result will be saved in temporary variables which can be applied to
parameter variables of current model by calling 'apply()' method. And the
'restore()' method is used to restored the parameter values of current model.
The size of average window is determined by average_window_rate,
min_average_window, max_average_window and current update times.
Args:
average_window_rate: The rate of average window.
min_average_window: The minimum size of average window.
max_average_window: The maximum size of average window.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
.. code-block:: python
optimizer = fluid.optimizer.Momentum()
optimizer.minimize(cost)
model_average = fluid.optimizer.ModelAverage(0.15,
min_average_window=10000,
max_average_window=20000)
for pass_id in range(args.pass_num):
for data in train_reader():
exe.run(fluid.default_main_program()...)
with model_average.apply(exe):
for data in test_reader():
exe.run(inference_program...)
"""
def __init__(self,
average_window_rate,
min_average_window=10000,
max_average_window=10000,
regularization=None,
name=None):
super(ModelAverage, self).__init__(
0.0, regularization=regularization, name=name)
self.average_window = average_window_rate
self.min_average_window = min_average_window
self.max_average_window = max_average_window
self.params_grads = []
for param in framework.default_main_program().global_block(
).all_parameters():
if param.do_model_average != False:
grad = param.block.create_var(
name=unique_name.generate(".".join([param.name, 'tmp'])),
dtype=param.dtype,
persistable=False,
stop_gradient=True)
self.params_grads.append((param, grad))
for param, grad in self.params_grads:
if grad is None:
continue
with param.block.program._optimized_guard(
[param, grad]), name_scope('move_average'):
self._append_average_accumulate_op(param)
self.apply_program = Program()
block = self.apply_program.global_block()
with program_guard(main_program=self.apply_program):
for param_grad in self.params_grads:
self._add_average_apply_op(block, param_grad)
self.restore_program = Program()
block = self.restore_program.global_block()
with program_guard(main_program=self.restore_program):
for param_grad in self.params_grads:
self._add_average_restore_op(block, param_grad)
def _add_average_apply_op(self, block, param_grad):
param = block._clone_variable(param_grad[0])
grad = block._clone_variable(param_grad[1])
sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
num_accumulates = block._clone_variable(
self._get_accumulator('num_accumulates', param))
old_num_accumulates = block._clone_variable(
self._get_accumulator('old_num_accumulates', param))
num_updates = block._clone_variable(
self._get_accumulator('num_updates', param))
# backup param value to grad
layers.assign(input=param, output=grad)
# param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
sum = layers.sum(x=[sum_1, sum_2, sum_3])
tmp = layers.cast(
x=tmp, dtype='float32' if self._dtype == None else self._dtype)
sum = layers.cast(
x=sum, dtype='float32' if self._dtype == None else self._dtype)
ops._elementwise_div(x=sum, y=tmp, out=param)
def _add_average_restore_op(self, block, param_grad):
param = block._clone_variable(param_grad[0])
grad = block._clone_variable(param_grad[1])
layers.assign(input=grad, output=param)
def _append_average_accumulate_op(self, param):
self.helper = LayerHelper("average_accumulate")
sum_1 = self._add_accumulator('sum_1', param)
sum_2 = self._add_accumulator('sum_2', param)
sum_3 = self._add_accumulator('sum_3', param)
num_accumulates = self._add_accumulator(
'num_accumulates', param, dtype='int64', shape=[1])
old_num_accumulates = self._add_accumulator(
'old_num_accumulates', param, dtype='int64', shape=[1])
num_updates = self._add_accumulator(
'num_updates', param, dtype='int64', shape=[1])
self.helper.append_op(
type='average_accumulates',
inputs={
"param": param,
"in_sum_1": sum_1,
"in_sum_2": sum_2,
"in_sum_3": sum_3,
"in_num_accumulates": num_accumulates,
"in_old_num_accumulates": old_num_accumulates,
"in_num_updates": num_updates
},
outputs={
"out_sum_1": sum_1,
"out_sum_2": sum_2,
"out_sum_3": sum_3,
"out_num_accumulates": num_accumulates,
"out_old_num_accumulates": old_num_accumulates,
"out_num_updates": num_updates,
},
attrs={
"average_window": self.average_window,
"min_average_window": self.min_average_window,
"max_average_window": self.max_average_window,
})
@contextmanager
def apply(self, executor, need_restore=True):
"""Apply average values to parameters of current model.
"""
executor.run(self.apply_program)
try:
yield
finally:
if need_restore:
self.restore(executor)
def restore(self, executor):
"""Restore parameter values of current model.
"""
executor.run(self.restore_program)