cpu_lstm_compute.h 2.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <string>
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
19 20 21
#ifdef __AVX__
#include <immintrin.h>
#endif
T
tensor-tang 已提交
22 23 24 25 26 27 28

namespace paddle {
namespace operators {
namespace math {

// TODO(TJ): ugly workaround, clean me
template <typename T>
T
tensor-tang 已提交
29
void lstm_compute_ctht(T* gates, const T* ct_1, T* ct, T* ht) {
T
tensor-tang 已提交
30 31 32 33
  // gates: W_ch, W_ih, W_fh, W_oh
  vec_sigmoid<T, platform::jit::avx>(24, gates + 8, gates + 8);
  vec_tanh<T, platform::jit::avx>(8, gates, gates);
  const T *i = gates + 8, *f = gates + 16, *o = gates + 24;
T
tensor-tang 已提交
34 35
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
T
tensor-tang 已提交
36 37 38 39 40
  for (int d = 0; d < 8; ++d) {
    // C_t = C_t-1 * fgated + cand_gated * igated
    ct[d] = ct_1[d] * f[d] + gates[d] * i[d];
    // H_t = act_cell(C_t) * ogated
    T tmp = ct[d] * 2;
41
    tmp = static_cast<T>(0) - ((tmp < min) ? min : ((tmp > max) ? max : tmp));
T
tensor-tang 已提交
42 43 44 45 46 47
    vec_exp<T>(1, &tmp, &tmp);
    tmp = static_cast<T>(2) / (static_cast<T>(1) + tmp) - static_cast<T>(1);
    ht[d] = tmp * o[d];
  }
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#ifdef __AVX__
namespace detail {
namespace forward {
namespace avx {
__m256 Sigmoid(const __m256 a);
__m256 Tanh(const __m256 a);
}  // namespace avx
}  // namespace forward
}  // namespace detail

template <>
void lstm_compute_ctht<float>(float* gates, const float* ct_1, float* ct,
                              float* ht) {
  namespace act = detail::forward::avx;
  // gates: W_ch, W_ih, W_fh, W_oh
  __m256 c, i, f, o;
  c = _mm256_loadu_ps(gates);
  i = _mm256_loadu_ps(gates + 8);
  f = _mm256_loadu_ps(gates + 16);
  o = _mm256_loadu_ps(gates + 24);

  /* C_t = C_t-1 * fgated + cand_gated * igated*/
  c = _mm256_mul_ps(act::Tanh(c), act::Sigmoid(i));
  i = _mm256_loadu_ps(ct_1);
  f = _mm256_mul_ps(i, act::Sigmoid(f));
  f = _mm256_add_ps(c, f);
  _mm256_storeu_ps(ct, f);

  /* H_t = act_cell(C_t) * ogated */
  o = _mm256_mul_ps(act::Tanh(f), act::Sigmoid(o));
  _mm256_storeu_ps(ht, o);
}
#endif

T
tensor-tang 已提交
82 83 84
}  // namespace math
}  // namespace operators
}  // namespace paddle