OuterProdLayer.cpp 3.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "paddle/utils/Logging.h"
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * A layer for computing the outer product of two vectors,
 * which is used in NEURAL TURING MACHINE
 * Input: two vectors: batchSize x dim1, batchSize x dim2
 * Output: a matrix: (batchSize x (dim1*dim2))
 */

class OuterProdLayer : public Layer {
protected:
  MatrixPtr tmpMtx0;
  MatrixPtr tmpRow0;
  MatrixPtr tmpRow1;

public:
  explicit OuterProdLayer(const LayerConfig& config) : Layer(config) {}

  ~OuterProdLayer() {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);
  void backward(const UpdateCallback& callback = nullptr);
};

REGISTER_LAYER(out_prod, OuterProdLayer);

bool OuterProdLayer::init(const LayerMap& layerMap,
                          const ParameterMap& parameterMap) {
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(inputLayers_.size(), 2U);

  size_t dim0 = inputLayers_[0]->getSize();
  size_t dim1 = inputLayers_[1]->getSize();

  CHECK_EQ(dim0 * dim1, getSize()) << "Dimension mismatch";

  tmpRow0 = Matrix::create(nullptr, /* height= */ 1, dim0, /* trans= */ false,
                           useGpu_);
  tmpRow1 = Matrix::create(nullptr, /* height= */ 1, dim1, /* trans= */ false,
                           useGpu_);
  tmpMtx0 = Matrix::create(nullptr, /* height= */ dim0, dim1,
                           /* trans= */ false, useGpu_);
  return true;
}

void OuterProdLayer::forward(PassType passType) {
  Layer::forward(passType);

  MatrixPtr inV0 = getInputValue(0);
  MatrixPtr inV1 = getInputValue(1);

  size_t batchSize = inV0->getHeight();
  size_t dim0 = inV0->getWidth();
  size_t dim1 = inV1->getWidth();

  CHECK_EQ(dim0 * dim1, getSize());
  CHECK_EQ(inV1->getHeight(), batchSize);

  {
    REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
    reserveOutput(batchSize, dim0 * dim1);
  }

  MatrixPtr outV = getOutputValue();

  {
    REGISTER_TIMER_INFO("FwOutProdTimer", getName().c_str());
    for (size_t i = 0; i < batchSize; i++) {
      tmpMtx0->setData(outV->getData() + i * dim0 * dim1);
      tmpRow0->setData(inV0->getData() + i * dim0);
      tmpRow1->setData(inV1->getData() + i * dim1);

      tmpMtx0->mul(tmpRow0->getTranspose(), tmpRow1);
    }
  }
}

void OuterProdLayer::backward(const UpdateCallback& callback) {
  MatrixPtr inV0 = getInputValue(0);
  MatrixPtr inV1 = getInputValue(1);
  MatrixPtr outG = getOutputGrad();
  MatrixPtr inG0 = getInputGrad(0);
  MatrixPtr inG1 = getInputGrad(1);

  size_t batchSize = inV0->getHeight();
  size_t dim0 = inV0->getWidth();
  size_t dim1 = inV1->getWidth();

  {
    REGISTER_TIMER_INFO("BwOutProdTimer", getName().c_str());

    if (inG0) {
      for (size_t i = 0; i < batchSize; i++) {
        tmpMtx0->setData(outG->getData() + i * dim0 * dim1);
        tmpRow0->setData(inG0->getData() + i * dim0);
        tmpRow1->setData(inV1->getData() + i * dim1);

        tmpRow0->mul(tmpRow1, tmpMtx0->getTranspose(), 1, 1);
      }
    }

    if (inG1) {
      for (size_t i = 0; i < batchSize; i++) {
        tmpMtx0->setData(outG->getData() + i * dim0 * dim1);
        tmpRow0->setData(inV0->getData() + i * dim0);
        tmpRow1->setData(inG1->getData() + i * dim1);

        tmpRow1->mul(tmpRow0, tmpMtx0, 1, 1);
      }
    }
  }
}

}  // namespace paddle