rnn.py 122.8 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
G
Guo Sheng 已提交
16
from functools import partial, reduce
J
Jiaqi Liu 已提交
17
import warnings
G
Guo Sheng 已提交
18

19

20
import paddle
21
from paddle.utils import deprecated
G
Guo Sheng 已提交
22 23 24 25
from . import nn
from . import tensor
from . import control_flow
from . import utils
26
from . import sequence_lod
G
Guo Sheng 已提交
27
from .utils import *
weixin_46829950's avatar
weixin_46829950 已提交
28
from .. import core
29 30
from ..framework import default_main_program
from ..data_feeder import convert_dtype
31
from ..layer_helper import LayerHelper
J
Jiabin Yang 已提交
32
from ..framework import _non_static_mode
33
from ..param_attr import ParamAttr
X
Xing Wu 已提交
34
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
35

36
from collections.abc import Sequence
G
Guo Sheng 已提交
37 38 39 40 41 42

__all__ = [
    'RNNCell',
    'GRUCell',
    'LSTMCell',
    'rnn',
F
Feiyu Chan 已提交
43
    'birnn',
G
Guo Sheng 已提交
44
    'dynamic_decode',
45 46 47 48
    'DecodeHelper',
    'TrainingHelper',
    'GreedyEmbeddingHelper',
    'SampleEmbeddingHelper',
49 50 51 52 53 54 55 56
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'lstm_unit',
    'lstm',
    'beam_search',
    'beam_search_decode',
G
Guo Sheng 已提交
57 58 59
]


60
class RNNCell:
G
Guo Sheng 已提交
61
    """
62
        :api_attr: Static Graph
S
swtkiwi 已提交
63

G
Guo Sheng 已提交
64 65 66 67 68 69
    RNNCell is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

    def call(self, inputs, states, **kwargs):
70
        r"""
G
Guo Sheng 已提交
71 72 73 74 75 76 77 78 79 80
        Every cell must implement this method to do the calculations mapping the
        inputs and states to the output and new states.

        To be more flexible, both inputs and states can be a tensor variable or
        a nested structure (list|tuple|namedtuple|dict) of tensor variable, that
        is, a (possibly nested structure of) tensor variable[s].

        Parameters:
            inputs: A (possibly nested structure of) tensor variable[s].
            states: A (possibly nested structure of) tensor variable[s].
81 82
            **kwargs: Additional keyword arguments, provided by the caller.

G
Guo Sheng 已提交
83 84 85 86 87 88 89 90 91 92 93
        Returns:
            tuple: outputs and new_states pair. outputs and new_states both \
                can be nested structure of tensor variables. new_states must \
                have the same structure with states.

        """
        raise NotImplementedError("RNNCell must implent the call function.")

    def __call__(self, inputs, states, **kwargs):
        return self.call(inputs, states, **kwargs)

94 95 96 97 98 99 100 101
    def get_initial_states(
        self,
        batch_ref,
        shape=None,
        dtype='float32',
        init_value=0,
        batch_dim_idx=0,
    ):
102
        r"""
G
Guo Sheng 已提交
103 104 105 106 107 108 109
        Generate initialized states according to provided shape, data type and
        value.

        Parameters:
            batch_ref: A (possibly nested structure of) tensor variable[s].
                The first dimension of the tensor will be used as batch size to
                initialize states.
T
tianshuo78520a 已提交
110
            shape: A (possibly nested structure of) shape[s], where a shape is
G
Guo Sheng 已提交
111 112 113
                represented as a list/tuple of integer). -1(for batch size) will
                beautomatically inserted if shape is not started with it. If None,
                property `state_shape` will be used. The default value is None.
T
tianshuo78520a 已提交
114
            dtype: A (possibly nested structure of) data type[s]. The structure
G
Guo Sheng 已提交
115
                must be same as that of `shape`, except when all tensors' in states
X
Xing Wu 已提交
116
                has the same data type, a single data type can be used. If
G
Guo Sheng 已提交
117
                property `cell.state_shape` is not available, float32 will be used
X
Xing Wu 已提交
118
                as the data type. The default value is float32.
G
Guo Sheng 已提交
119
            init_value: A float value used to initialize states.
120 121
            batch_dim_idx: An integer indicating which dimension of the tensor in
                inputs represents batch size.  The default value is 0.
122

G
Guo Sheng 已提交
123 124 125 126
        Returns:
            Variable: tensor variable[s] packed in the same structure provided \
                by shape, representing the initialized states.
        """
127 128 129 130 131 132
        check_variable_and_dtype(
            batch_ref,
            'batch_ref',
            ['float32', 'float64', 'int32', 'int64'],
            'RNNCell',
        )
133
        check_type(shape, 'shape', (list, tuple, type(None), int), 'RNNCell')
X
Xing Wu 已提交
134 135 136 137
        if isinstance(shape, (list, tuple)):
            shapes = map_structure(lambda x: x, shape)
            if isinstance(shape, list):
                for i, _shape in enumerate(shapes):
138
                    check_type(_shape, 'shapes[' + str(i) + ']', int, 'RNNCell')
X
Xing Wu 已提交
139
            else:
140
                check_type(shapes, 'shapes', int, 'RNNCell')
X
Xing Wu 已提交
141 142
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'RNNCell')

G
Guo Sheng 已提交
143 144 145 146 147
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
148 149 150 151
            if isinstance(seq, list) or isinstance(seq, tuple):
                if reduce(
                    lambda flag, x: isinstance(x, int) and flag, seq, True
                ):
G
Guo Sheng 已提交
152 153 154 155
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
156
            return isinstance(seq, Sequence) and not isinstance(seq, str)
G
Guo Sheng 已提交
157

158
        class Shape:
G
Guo Sheng 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:  # use fp32 as default
            states_dtypes = "float32"
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
            lambda shape, dtype: tensor.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
183
                value=init_value,
184 185 186 187 188
                input_dim_idx=batch_dim_idx,
            ),
            states_shapes,
            states_dtypes,
        )
G
Guo Sheng 已提交
189 190 191 192 193
        return init_states

    @property
    def state_shape(self):
        """
194
        Abstract method (property).
G
Guo Sheng 已提交
195
        Used to initialize states.
T
tianshuo78520a 已提交
196
        A (possibly nested structure of) shape[s], where a shape is represented
G
Guo Sheng 已提交
197
        as a list/tuple of integers (-1 for batch size would be automatically
198
        inserted into a shape if shape is not started with it).
G
Guo Sheng 已提交
199 200 201 202
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
203
        raise NotImplementedError(
204 205
            "Please add implementaion for `state_shape` in the used cell."
        )
G
Guo Sheng 已提交
206 207 208 209

    @property
    def state_dtype(self):
        """
210
        Abstract method (property).
G
Guo Sheng 已提交
211
        Used to initialize states.
T
tianshuo78520a 已提交
212
        A (possibly nested structure of) data types[s]. The structure must be
G
Guo Sheng 已提交
213
        same as that of `shape`, except when all tensors' in states has the same
T
tianshuo78520a 已提交
214
        data type, a single data type can be used.
G
Guo Sheng 已提交
215 216 217 218
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
219
        raise NotImplementedError(
220 221
            "Please add implementaion for `state_dtype` in the used cell."
        )
G
Guo Sheng 已提交
222 223 224


class GRUCell(RNNCell):
225
    r"""
226
        :api_attr: Static Graph
S
swtkiwi 已提交
227

228
    Gated Recurrent Unit cell. It is a wrapper for
G
Guo Sheng 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    `fluid.contrib.layers.rnn_impl.BasicGRUUnit` to make it adapt to RNNCell.

    The formula used is as follow:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

    For more details, please refer to  `Learning Phrase Representations using
    RNN Encoder Decoder for Statistical Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            cell = layers.GRUCell(hidden_size=256)
    """

254 255 256 257 258 259 260 261 262 263
    def __init__(
        self,
        hidden_size,
        param_attr=None,
        bias_attr=None,
        gate_activation=None,
        activation=None,
        dtype="float32",
        name="GRUCell",
    ):
G
Guo Sheng 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        """
        Constructor of GRUCell.

        Parameters:
            hidden_size (int): The hidden size in the GRU cell.
            param_attr(ParamAttr, optional): The parameter attribute for the learnable
                weight matrix. Default: None.
            bias_attr (ParamAttr, optional): The parameter attribute for the bias
                of GRU. Default: None.
            gate_activation (function, optional): The activation function for :math:`act_g`.
                Default: `fluid.layers.sigmoid`.
            activation (function, optional): The activation function for :math:`act_c`.
                Default: `fluid.layers.tanh`.
            dtype(string, optional): The data type used in this cell. Default float32.
            name(string, optional) : The name scope used to identify parameters and biases.
        """
X
Xing Wu 已提交
280 281
        check_type(hidden_size, 'hidden_size', (int), 'GRUCell')
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'GRUCell')
G
Guo Sheng 已提交
282 283
        self.hidden_size = hidden_size
        from .. import contrib  # TODO: resolve recurrent import
284

G
Guo Sheng 已提交
285
        self.gru_unit = contrib.layers.rnn_impl.BasicGRUUnit(
286 287 288 289 290 291 292 293
            name,
            hidden_size,
            param_attr,
            bias_attr,
            gate_activation,
            activation,
            dtype,
        )
G
Guo Sheng 已提交
294 295

    def call(self, inputs, states):
296
        r"""
G
Guo Sheng 已提交
297 298 299 300 301
        Perform calculations of GRU.

        Parameters:
            inputs(Variable): A tensor with shape `[batch_size, input_size]`,
                corresponding to :math:`x_t` in the formula. The data type
X
Xing Wu 已提交
302
                should be float32 or float64.
G
Guo Sheng 已提交
303 304
            states(Variable): A tensor with shape `[batch_size, hidden_size]`.
                corresponding to :math:`h_{t-1}` in the formula. The data type
X
Xing Wu 已提交
305
                should be float32 or float64.
G
Guo Sheng 已提交
306 307 308 309 310

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` and \
                `new_states` is the same tensor shaped `[batch_size, hidden_size]`, \
                corresponding to :math:`h_t` in the formula. The data type of the \
311
                tensor is same as that of `states`.
G
Guo Sheng 已提交
312
        """
X
Xing Wu 已提交
313

314 315 316 317 318 319
        check_variable_and_dtype(
            inputs, 'inputs', ['float32', 'float64'], 'GRUCell'
        )
        check_variable_and_dtype(
            states, 'states', ['float32', 'float64'], 'GRUCell'
        )
G
Guo Sheng 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333
        new_hidden = self.gru_unit(inputs, states)
        return new_hidden, new_hidden

    @property
    def state_shape(self):
        """
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to :math:`h_{t-1}`.
        """
        return [self.hidden_size]


class LSTMCell(RNNCell):
334
    r"""
335
        :api_attr: Static Graph
S
swtkiwi 已提交
336

337
    Long-Short Term Memory cell. It is a wrapper for
G
Guo Sheng 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    `fluid.contrib.layers.rnn_impl.BasicLSTMUnit` to make it adapt to RNNCell.

    The formula used is as follow:

    .. math::

        i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} act_c (c_{t})
353

G
Guo Sheng 已提交
354 355 356 357 358 359 360 361 362 363
    For more details, please refer to `RECURRENT NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            cell = layers.LSTMCell(hidden_size=256)
    """

364 365 366 367 368 369 370 371 372 373 374
    def __init__(
        self,
        hidden_size,
        param_attr=None,
        bias_attr=None,
        gate_activation=None,
        activation=None,
        forget_bias=1.0,
        dtype="float32",
        name="LSTMCell",
    ):
G
Guo Sheng 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
        """
        Constructor of LSTMCell.

        Parameters:
            hidden_size (int): The hidden size in the LSTM cell.
            param_attr(ParamAttr, optional): The parameter attribute for the learnable
                weight matrix. Default: None.
            bias_attr (ParamAttr, optional): The parameter attribute for the bias
                of LSTM. Default: None.
            gate_activation (function, optional): The activation function for :math:`act_g`.
                Default: 'fluid.layers.sigmoid'.
            activation (function, optional): The activation function for :math:`act_h`.
                Default: 'fluid.layers.tanh'.
            forget_bias(float, optional): forget bias used when computing forget gate.
                Default 1.0
            dtype(string, optional): The data type used in this cell. Default float32.
            name(string, optional) : The name scope used to identify parameters and biases.
        """
X
Xing Wu 已提交
393 394 395

        check_type(hidden_size, 'hidden_size', (int), 'LSTMCell')
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'LSTMCell')
G
Guo Sheng 已提交
396 397
        self.hidden_size = hidden_size
        from .. import contrib  # TODO: resolve recurrent import
398

G
Guo Sheng 已提交
399
        self.lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit(
400 401 402 403 404 405 406 407 408
            name,
            hidden_size,
            param_attr,
            bias_attr,
            gate_activation,
            activation,
            forget_bias,
            dtype,
        )
G
Guo Sheng 已提交
409 410

    def call(self, inputs, states):
411
        r"""
G
Guo Sheng 已提交
412 413 414 415 416
        Perform calculations of LSTM.

        Parameters:
            inputs(Variable): A tensor with shape `[batch_size, input_size]`,
                corresponding to :math:`x_t` in the formula. The data type
X
Xing Wu 已提交
417
                should be float32 or float64.
T
tianshuo78520a 已提交
418
            states(Variable): A list of containing two tensors, each shaped
G
Guo Sheng 已提交
419
                `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}, c_{t-1}`
X
Xing Wu 已提交
420
                in the formula. The data type should be float32 or float64.
G
Guo Sheng 已提交
421 422 423 424 425 426 427 428 429

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \
                a tensor with shape `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}` in the formula; `new_states` is a list containing \
                two tenser variables shaped `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}, c_{t}` in the formula. The data type of these \
                tensors all is same as that of `states`.
        """
X
Xing Wu 已提交
430

431 432 433
        check_variable_and_dtype(
            inputs, 'inputs', ['float32', 'float64'], 'LSTMCell'
        )
X
Xing Wu 已提交
434 435 436
        check_type(states, 'states', list, 'LSTMCell')
        if isinstance(states, list):
            for i, state in enumerate(states):
437 438 439 440 441 442
                check_variable_and_dtype(
                    state,
                    'state[' + str(i) + ']',
                    ['float32', 'float64'],
                    'LSTMCell',
                )
X
Xing Wu 已提交
443

G
Guo Sheng 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
        pre_hidden, pre_cell = states
        new_hidden, new_cell = self.lstm_unit(inputs, pre_hidden, pre_cell)
        return new_hidden, [new_hidden, new_cell]

    @property
    def state_shape(self):
        """
        The `state_shape` of LSTMCell is a list with two shapes: `[[hidden_size], [hidden_size]]`
        (-1 for batch size would be automatically inserted into shape). These two
        shapes correspond to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
        return [[self.hidden_size], [self.hidden_size]]


458 459 460 461 462 463 464 465 466
def rnn(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
G
Guo Sheng 已提交
467 468
    """
    rnn creates a recurrent neural network specified by RNNCell `cell`,
469
    which performs :code:`cell.call()` (for dygraph mode :code:`cell.forward`)
F
Feiyu Chan 已提交
470 471 472 473
    repeatedly until reaches to the maximum length of `inputs`.

    Arguments:
        cell(RNNCellBase): An instance of `RNNCellBase`.
474 475
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
F
Feiyu Chan 已提交
476 477
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
478 479
        initial_states(Tensor|tuple|list, optional): the initial state of the
            rnn cell. Tensor or a possibly nested structure of tensors. If not
F
Feiyu Chan 已提交
480 481
            provided, `cell.get_initial_states` would be called to produce
            the initial state. Defaults to None.
482
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
F
Feiyu Chan 已提交
483
            or int32. The valid lengths of input sequences. Defaults to None.
484 485
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
F
Feiyu Chan 已提交
486 487 488 489 490
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
491
        **kwargs: Additional keyword arguments to pass to `forward` of the cell.
G
Guo Sheng 已提交
492 493

    Returns:
F
Feiyu Chan 已提交
494
        (outputs, final_states)
495
        outputs (Tensor|list|tuple): the output sequence. Tensor or nested
F
Feiyu Chan 已提交
496
            structure of Tensors.
497 498
            If `time_major` is True, the shape of each tensor in outpus is
            `[time_steps, batch_size, hidden_size]`, else
F
Feiyu Chan 已提交
499 500
            `[batch_size, time_steps, hidden_size]`.
        final_states (Tensor|list|tuple): final states. A (possibly nested structure of)
501
            tensor[s], representing the final state for RNN. It has the same
F
Feiyu Chan 已提交
502 503
            structure of intial state. Each tensor in final states has the same
            shape and dtype as the corresponding tensor in initial states.
504

G
Guo Sheng 已提交
505 506 507 508 509

    Examples:

        .. code-block:: python

F
Feiyu Chan 已提交
510 511 512 513 514 515 516
            import paddle
            paddle.disable_static()

            cell = paddle.nn.SimpleRNNCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))
517
            outputs, final_states = paddle.fluid.layers.rnn(cell, inputs, prev_h)
F
Feiyu Chan 已提交
518

G
Guo Sheng 已提交
519
    """
J
Jiabin Yang 已提交
520
    if _non_static_mode():
521 522 523 524 525 526 527 528 529
        return _rnn_dynamic_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )
F
Feiyu Chan 已提交
530
    else:
531 532 533 534 535 536 537 538 539
        return _rnn_static_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )
F
Feiyu Chan 已提交
540 541


542
class ArrayWrapper:
F
Feiyu Chan 已提交
543 544 545 546 547 548 549
    def __init__(self, x):
        self.array = [x]

    def append(self, x):
        self.array.append(x)
        return self

550 551 552
    def __getitem__(self, item):
        return self.array.__getitem__(item)

F
Feiyu Chan 已提交
553 554 555

def _maybe_copy(state, new_state, step_mask):
    """update rnn state or just pass the old state through"""
556 557 558
    new_state = nn.elementwise_mul(
        new_state, step_mask, axis=0
    ) + nn.elementwise_mul(state, (1 - step_mask), axis=0)
F
Feiyu Chan 已提交
559 560 561 562 563
    return new_state


def _transpose_batch_time(x):
    perm = [1, 0] + list(range(2, len(x.shape)))
564
    return paddle.transpose(x, perm)
F
Feiyu Chan 已提交
565 566


567 568 569 570 571 572 573 574 575
def _rnn_dynamic_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
F
Feiyu Chan 已提交
576 577 578 579
    time_step_index = 0 if time_major else 1
    flat_inputs = flatten(inputs)
    time_steps = flat_inputs[0].shape[time_step_index]

580 581
    if initial_states is None:
        initial_states = cell.get_initial_states(
582 583
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
584

F
Feiyu Chan 已提交
585 586 587 588
    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length is not None:
589 590 591
        mask = sequence_lod.sequence_mask(
            sequence_length, maxlen=time_steps, dtype=inputs.dtype
        )
592
        mask = paddle.transpose(mask, [1, 0])
F
Feiyu Chan 已提交
593 594

    if is_reverse:
595
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
596
        mask = (
597
            paddle.reverse(mask, axis=[0])
598 599 600
            if sequence_length is not None
            else None
        )
F
Feiyu Chan 已提交
601 602 603 604 605 606 607

    states = initial_states
    outputs = []
    for i in range(time_steps):
        step_inputs = map_structure(lambda x: x[i], inputs)
        step_outputs, new_states = cell(step_inputs, states, **kwargs)
        if sequence_length is not None:
608 609 610
            new_states = map_structure(
                partial(_maybe_copy, step_mask=mask[i]), states, new_states
            )
F
Feiyu Chan 已提交
611
        states = new_states
612 613 614 615 616 617 618
        outputs = (
            map_structure(lambda x: ArrayWrapper(x), step_outputs)
            if i == 0
            else map_structure(
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )
F
Feiyu Chan 已提交
619 620

    final_outputs = map_structure(
621
        lambda x: paddle.stack(x.array, axis=time_step_index), outputs
622
    )
F
Feiyu Chan 已提交
623 624 625

    if is_reverse:
        final_outputs = map_structure(
626
            lambda x: paddle.reverse(x, axis=time_step_index), final_outputs
627
        )
F
Feiyu Chan 已提交
628 629 630 631 632

    final_states = new_states
    return final_outputs, final_states


633 634 635 636 637 638 639 640 641
def _rnn_static_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
X
Xing Wu 已提交
642 643 644
    check_type(inputs, 'inputs', (Variable, list, tuple), 'rnn')
    if isinstance(inputs, (list, tuple)):
        for i, input_x in enumerate(inputs):
645 646 647 648 649 650 651 652 653
            check_variable_and_dtype(
                input_x, 'inputs[' + str(i) + ']', ['float32', 'float64'], 'rnn'
            )
    check_type(
        initial_states,
        'initial_states',
        (Variable, list, tuple, type(None)),
        'rnn',
    )
X
Xing Wu 已提交
654

655 656 657
    check_type(
        sequence_length, 'sequence_length', (Variable, type(None)), 'rnn'
    )
G
Guo Sheng 已提交
658 659 660 661 662 663

    def _switch_grad(x, stop=False):
        x.stop_gradient = stop
        return x

    if initial_states is None:
664
        initial_states = cell.get_initial_states(
665 666
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
G
Guo Sheng 已提交
667 668 669 670 671 672
    initial_states = map_structure(_switch_grad, initial_states)

    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length:
2
201716010711 已提交
673
        max_seq_len = paddle.shape(flatten(inputs)[0])[0]
674
        mask = sequence_lod.sequence_mask(
G
Guo Sheng 已提交
675 676
            sequence_length,
            maxlen=max_seq_len,
677 678
            dtype=flatten(initial_states)[0].dtype,
        )
679
        mask = paddle.transpose(mask, [1, 0])
G
Guo Sheng 已提交
680
    if is_reverse:
681 682
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
        mask = paddle.reverse(mask, axis=[0]) if sequence_length else None
G
Guo Sheng 已提交
683 684 685 686 687 688 689

    # StaticRNN
    rnn = control_flow.StaticRNN()
    with rnn.step():
        inputs = map_structure(rnn.step_input, inputs)
        states = map_structure(rnn.memory, initial_states)
        copy_states = map_structure(lambda x: x, states)
H
Huihuang Zheng 已提交
690
        outputs, new_states = cell(inputs, copy_states, **kwargs)
G
Guo Sheng 已提交
691 692 693 694
        assert_same_structure(states, new_states)
        if sequence_length:
            step_mask = rnn.step_input(mask)
            new_states = map_structure(
695 696
                partial(_maybe_copy, step_mask=step_mask), states, new_states
            )
G
Guo Sheng 已提交
697 698 699 700 701 702 703

        map_structure(rnn.update_memory, states, new_states)
        flat_outputs = flatten(outputs)
        map_structure(rnn.step_output, outputs)
        map_structure(rnn.step_output, new_states)

    rnn_out = rnn()
704
    final_outputs = rnn_out[: len(flat_outputs)]
G
Guo Sheng 已提交
705
    final_outputs = pack_sequence_as(outputs, final_outputs)
706
    final_states = map_structure(lambda x: x[-1], rnn_out[len(flat_outputs) :])
G
Guo Sheng 已提交
707 708 709
    final_states = pack_sequence_as(new_states, final_states)

    if is_reverse:
710
        final_outputs = map_structure(
711
            lambda x: paddle.reverse(x, axis=[0]), final_outputs
712
        )
G
Guo Sheng 已提交
713 714 715 716 717 718 719

    if not time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

    return (final_outputs, final_states)


720 721 722 723 724 725 726 727 728
def birnn(
    cell_fw,
    cell_bw,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    **kwargs
):
F
Feiyu Chan 已提交
729
    """
730 731 732
    birnn creates a bidirectional recurrent neural network specified by
    RNNCell `cell_fw` and `cell_bw`, which performs :code:`cell.call()`
    (for dygraph mode :code:`cell.forward`) repeatedly until reaches to
733
    the maximum length of `inputs` and then concat the outputs for both RNNs
F
Feiyu Chan 已提交
734 735 736 737 738
    along the last axis.

    Arguments:
        cell_fw(RNNCellBase): An instance of `RNNCellBase`.
        cell_bw(RNNCellBase): An instance of `RNNCellBase`.
739 740
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
F
Feiyu Chan 已提交
741 742
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
743
        initial_states(tuple, optional): A tuple of initial states of
F
Feiyu Chan 已提交
744
            `cell_fw` and `cell_bw`.
745
            If not provided, `cell.get_initial_states` would be called to
F
Feiyu Chan 已提交
746
            produce initial state for each cell. Defaults to None.
747
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
F
Feiyu Chan 已提交
748
            or int32. The valid lengths of input sequences. Defaults to None.
749 750
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
F
Feiyu Chan 已提交
751 752 753
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
754
        **kwargs: Additional keyword arguments to pass to `forward` of each cell.
F
Feiyu Chan 已提交
755 756 757

    Returns:
        (outputs, final_states)
758 759 760
        outputs (Tensor): the outputs of the bidirectional RNN. It is the
            concatenation of the outputs from the forward RNN and backward
            RNN along the last axis.
F
Feiyu Chan 已提交
761 762 763
            If time major is True, the shape is `[time_steps, batch_size, size]`,
            else the shape is `[batch_size, time_steps, size]`, where size is
            `cell_fw.hidden_size + cell_bw.hidden_size`.
764 765
        final_states (tuple): A tuple of the final states of the forward
            cell and backward cell.
F
Feiyu Chan 已提交
766 767 768 769

    Examples:

        .. code-block:: python
770

F
Feiyu Chan 已提交
771 772 773 774 775 776 777 778 779 780
            import paddle
            paddle.disable_static()

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            hf, cf = paddle.rand((4, 32)), paddle.rand((4, 32))
            hb, cb = paddle.rand((4, 32)), paddle.rand((4, 32))
            initial_states = ((hf, cf), (hb, cb))
781
            outputs, final_states = paddle.fluid.layers.birnn(
F
Feiyu Chan 已提交
782
                cell_fw, cell_bw, inputs, initial_states)
783

F
Feiyu Chan 已提交
784 785 786
    """
    if initial_states is None:
        states_fw = cell_fw.get_initial_states(
787 788
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
F
Feiyu Chan 已提交
789
        states_bw = cell_fw.get_initial_states(
790 791
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
F
Feiyu Chan 已提交
792 793
    else:
        states_fw, states_bw = initial_states
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
    outputs_fw, states_fw = rnn(
        cell_fw,
        inputs,
        states_fw,
        sequence_length,
        time_major=time_major,
        **kwargs
    )

    outputs_bw, states_bw = rnn(
        cell_bw,
        inputs,
        states_bw,
        sequence_length,
        time_major=time_major,
        is_reverse=True,
        **kwargs
    )

    outputs = map_structure(
        lambda x, y: tensor.concat([x, y], -1), outputs_fw, outputs_bw
    )
F
Feiyu Chan 已提交
816 817 818 819 820

    final_states = (states_fw, states_bw)
    return outputs, final_states


821 822 823 824 825 826 827 828 829 830
def _dynamic_decode_imperative(
    decoder,
    inits=None,
    max_step_num=None,
    output_time_major=False,
    impute_finished=False,
    is_test=False,
    return_length=False,
    **kwargs
):
831 832 833 834 835 836 837 838 839 840 841 842
    def _maybe_copy(state, new_state, step_mask):
        # TODO: use where_op
        state_dtype = state.dtype
        if convert_dtype(state_dtype) in ["bool"]:
            state = tensor.cast(state, dtype="float32")
            new_state = tensor.cast(new_state, dtype="float32")
        if step_mask.dtype != state.dtype:
            step_mask = tensor.cast(step_mask, dtype=state.dtype)
            # otherwise, renamed bool gradients of would be summed up leading
            # to sum(bool) error.
            step_mask.stop_gradient = True
        new_state = nn.elementwise_mul(
843 844
            state, step_mask, axis=0
        ) - nn.elementwise_mul(new_state, (step_mask - 1), axis=0)
845 846 847
        if convert_dtype(state_dtype) in ["bool"]:
            new_state = tensor.cast(new_state, dtype=state_dtype)
        return new_state
S
swtkiwi 已提交
848

849
    initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
850 851 852 853 854
    inputs, states, finished = (
        initial_inputs,
        initial_states,
        initial_finished,
    )
855
    cond = paddle.logical_not((paddle.all(initial_finished)))
856
    sequence_lengths = tensor.cast(paddle.zeros_like(initial_finished), "int64")
857 858 859
    outputs = None

    step_idx = 0
860 861 862
    step_idx_tensor = tensor.fill_constant(
        shape=[1], dtype="int64", value=step_idx
    )
863
    while cond.numpy():
864 865 866
        (step_outputs, next_states, next_inputs, next_finished) = decoder.step(
            step_idx_tensor, inputs, states, **kwargs
        )
867 868 869 870 871
        if not decoder.tracks_own_finished:
            # BeamSearchDecoder would track it own finished, since
            # beams would be reordered and the finished status of each
            # entry might change. Otherwise, perform logical OR which
            # would not change the already finished.
2
201716010711 已提交
872
            next_finished = paddle.logical_or(next_finished, finished)
873 874 875
            # To confirm states.finished/finished be consistent with
            # next_finished.
            tensor.assign(next_finished, finished)
876
            next_sequence_lengths = paddle.add(
J
Jiaqi Liu 已提交
877
                sequence_lengths,
878
                tensor.cast(
2
201716010711 已提交
879
                    paddle.logical_not(finished), sequence_lengths.dtype
880 881
                ),
            )
J
Jiaqi Liu 已提交
882 883
            if impute_finished:  # rectify the states for the finished.
                next_states = map_structure(
884 885 886 887
                    lambda x, y: _maybe_copy(x, y, finished),
                    states,
                    next_states,
                )
J
Jiaqi Liu 已提交
888 889 890 891
        else:
            warnings.warn(
                "`next_states` has no `lengths` attribute, the returned `sequence_lengths` would be all zeros."
            ) if not hasattr(next_states, "lengths") else None
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
            next_sequence_lengths = getattr(
                next_states, "lengths", sequence_lengths
            )

        outputs = (
            map_structure(lambda x: ArrayWrapper(x), step_outputs)
            if step_idx == 0
            else map_structure(
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )
        inputs, states, finished, sequence_lengths = (
            next_inputs,
            next_states,
            next_finished,
            next_sequence_lengths,
        )
G
Guo Sheng 已提交
909

910 911
        control_flow.increment(x=step_idx_tensor, value=1.0, in_place=True)
        step_idx += 1
G
Guo Sheng 已提交
912

913
        cond = paddle.logical_not(paddle.all(finished))
914 915
        if max_step_num is not None and step_idx > max_step_num:
            break
G
Guo Sheng 已提交
916

917 918 919
    final_outputs = map_structure(
        lambda x: paddle.stack(x.array, axis=0), outputs
    )
920
    final_states = states
G
Guo Sheng 已提交
921

922
    try:
923 924 925
        final_outputs, final_states = decoder.finalize(
            final_outputs, final_states, sequence_lengths
        )
926 927
    except NotImplementedError:
        pass
G
Guo Sheng 已提交
928

929 930
    if not output_time_major:
        final_outputs = map_structure(
931 932 933
            lambda x: paddle.transpose(
                x, [1, 0] + list(range(2, len(x.shape)))
            ),
934 935
            final_outputs,
        )
936

937 938 939 940 941
    return (
        (final_outputs, final_states, sequence_lengths)
        if return_length
        else (final_outputs, final_states)
    )
942 943


944 945 946 947 948 949 950 951 952 953
def _dynamic_decode_declarative(
    decoder,
    inits=None,
    max_step_num=None,
    output_time_major=False,
    impute_finished=False,
    is_test=False,
    return_length=False,
    **kwargs
):
G
Guo Sheng 已提交
954
    initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
955 956 957 958 959
    global_inputs, global_states, global_finished = (
        initial_inputs,
        initial_states,
        initial_finished,
    )
960
    global_finished.stop_gradient = True
G
Guo Sheng 已提交
961
    step_idx = tensor.fill_constant(shape=[1], dtype="int64", value=0)
962

963
    cond = paddle.logical_not((paddle.all(initial_finished)))
G
Guo Sheng 已提交
964
    if max_step_num is not None:
965 966 967
        max_step_num = tensor.fill_constant(
            shape=[1], dtype="int64", value=max_step_num
        )
968
    while_op = paddle.static.nn.control_flow.While(cond, is_test=is_test)
G
Guo Sheng 已提交
969

970
    sequence_lengths = tensor.cast(paddle.zeros_like(initial_finished), "int64")
971 972 973 974 975 976 977 978 979
    sequence_lengths.stop_gradient = True

    if is_test:
        # for test, reuse inputs and states variables to save memory
        inputs = map_structure(lambda x: x, initial_inputs)
        states = map_structure(lambda x: x, initial_states)
    else:
        # inputs and states of all steps must be saved for backward and training
        inputs_arrays = map_structure(
980 981
            lambda x: control_flow.array_write(x, step_idx), initial_inputs
        )
982
        states_arrays = map_structure(
983 984
            lambda x: control_flow.array_write(x, step_idx), initial_states
        )
G
Guo Sheng 已提交
985 986 987

    def _maybe_copy(state, new_state, step_mask):
        # TODO: use where_op
988 989 990 991 992 993 994 995 996
        state_dtype = state.dtype
        if convert_dtype(state_dtype) in ["bool"]:
            state = tensor.cast(state, dtype="float32")
            new_state = tensor.cast(new_state, dtype="float32")
        if step_mask.dtype != state.dtype:
            step_mask = tensor.cast(step_mask, dtype=state.dtype)
            # otherwise, renamed bool gradients of would be summed up leading
            # to sum(bool) error.
            step_mask.stop_gradient = True
G
Guo Sheng 已提交
997
        new_state = nn.elementwise_mul(
998 999
            state, step_mask, axis=0
        ) - nn.elementwise_mul(new_state, (step_mask - 1), axis=0)
1000 1001
        if convert_dtype(state_dtype) in ["bool"]:
            new_state = tensor.cast(new_state, dtype=state_dtype)
G
Guo Sheng 已提交
1002 1003 1004
        return new_state

    def _transpose_batch_time(x):
1005
        return paddle.transpose(x, [1, 0] + list(range(2, len(x.shape))))
G
Guo Sheng 已提交
1006

1007 1008
    def _create_array_out_of_while(dtype):
        current_block_idx = default_main_program().current_block_idx
1009 1010 1011
        default_main_program().current_block_idx = (
            default_main_program().current_block().parent_idx
        )
1012
        tensor_array = paddle.tensor.create_array(dtype)
1013 1014 1015
        default_main_program().current_block_idx = current_block_idx
        return tensor_array

G
Guo Sheng 已提交
1016 1017
    # While
    with while_op.block():
1018 1019 1020
        if not is_test:
            inputs = map_structure(
                lambda array: control_flow.array_read(array, step_idx),
1021 1022
                inputs_arrays,
            )
1023 1024
            states = map_structure(
                lambda array: control_flow.array_read(array, step_idx),
1025 1026 1027 1028 1029
                states_arrays,
            )
        (outputs, next_states, next_inputs, next_finished) = decoder.step(
            step_idx, inputs, states, **kwargs
        )
1030 1031 1032 1033 1034
        if not decoder.tracks_own_finished:
            # BeamSearchDecoder would track it own finished, since beams would
            # be reordered and the finished status of each entry might change.
            # Otherwise, perform logical OR which would not change the already
            # finished.
2
201716010711 已提交
1035
            next_finished = paddle.logical_or(next_finished, global_finished)
1036
            next_sequence_lengths = paddle.add(
J
Jiaqi Liu 已提交
1037
                sequence_lengths,
1038
                tensor.cast(
2
201716010711 已提交
1039
                    paddle.logical_not(global_finished),
1040 1041 1042
                    sequence_lengths.dtype,
                ),
            )
J
Jiaqi Liu 已提交
1043 1044 1045 1046
            if impute_finished:  # rectify the states for the finished.
                next_states = map_structure(
                    lambda x, y: _maybe_copy(x, y, global_finished),
                    states,
1047 1048
                    next_states,
                )
J
Jiaqi Liu 已提交
1049 1050 1051 1052
        else:
            warnings.warn(
                "`next_states` has no `lengths` attribute, the returned `sequence_lengths` would be all zeros."
            ) if not hasattr(next_states, "lengths") else None
1053 1054 1055
            next_sequence_lengths = getattr(
                next_states, "lengths", sequence_lengths
            )
1056 1057 1058

        # create tensor array in global block after dtype[s] of outputs can be got
        outputs_arrays = map_structure(
1059 1060
            lambda x: _create_array_out_of_while(x.dtype), outputs
        )
1061

G
Guo Sheng 已提交
1062 1063
        map_structure(
            lambda x, x_array: control_flow.array_write(
1064 1065 1066 1067 1068
                x, i=step_idx, array=x_array
            ),
            outputs,
            outputs_arrays,
        )
G
Guo Sheng 已提交
1069
        control_flow.increment(x=step_idx, value=1.0, in_place=True)
1070 1071 1072 1073
        # update the global_finished first, since it might be also in states of
        # decoder, which otherwise would write a stale finished status to array
        tensor.assign(next_finished, global_finished)
        tensor.assign(next_sequence_lengths, sequence_lengths)
1074 1075 1076 1077 1078 1079
        if is_test:
            map_structure(tensor.assign, next_inputs, global_inputs)
            map_structure(tensor.assign, next_states, global_states)
        else:
            map_structure(
                lambda x, x_array: control_flow.array_write(
1080 1081 1082 1083 1084
                    x, i=step_idx, array=x_array
                ),
                next_inputs,
                inputs_arrays,
            )
1085 1086
            map_structure(
                lambda x, x_array: control_flow.array_write(
1087 1088 1089 1090 1091
                    x, i=step_idx, array=x_array
                ),
                next_states,
                states_arrays,
            )
G
Guo Sheng 已提交
1092
        if max_step_num is not None:
1093
            paddle.logical_and(
1094
                paddle.logical_not(paddle.all(global_finished)),
1095
                paddle.less_equal(step_idx, max_step_num),
1096 1097
                cond,
            )
G
Guo Sheng 已提交
1098
        else:
1099
            paddle.logical_not(paddle.all(global_finished), cond)
G
Guo Sheng 已提交
1100 1101 1102

    final_outputs = map_structure(
        lambda array: tensor.tensor_array_to_tensor(
1103 1104 1105 1106
            array, axis=0, use_stack=True
        )[0],
        outputs_arrays,
    )
1107 1108 1109 1110 1111
    if is_test:
        final_states = global_states
    else:
        final_states = map_structure(
            lambda array: control_flow.array_read(array, step_idx),
1112 1113
            states_arrays,
        )
G
Guo Sheng 已提交
1114 1115

    try:
1116 1117 1118
        final_outputs, final_states = decoder.finalize(
            final_outputs, final_states, sequence_lengths
        )
G
Guo Sheng 已提交
1119 1120 1121 1122 1123 1124
    except NotImplementedError:
        pass

    if not output_time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

1125 1126 1127 1128 1129
    return (
        (final_outputs, final_states, sequence_lengths)
        if return_length
        else (final_outputs, final_states)
    )
1130 1131


1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
def dynamic_decode(
    decoder,
    inits=None,
    max_step_num=None,
    output_time_major=False,
    impute_finished=False,
    is_test=False,
    return_length=False,
    **kwargs
):
1142
    r"""
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    Dynamic decoding performs :code:`decoder.step()` repeatedly until the returned
    Tensor indicating finished status contains all True values or the number of
    decoding step reaches to :attr:`max_step_num`.

    :code:`decoder.initialize()` would be called once before the decoding loop.
    If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
    would be called once after the decoding loop.

    Parameters:
        decoder(Decoder): An instance of `Decoder`.
1153
        inits(object, optional): Argument passed to `decoder.initialize`.
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
            Default `None`.
        max_step_num(int, optional): The maximum number of steps. If not provided,
            decode until the decoder is fully done, or in other words, the returned
            Tensor by :code:`decoder.step()` indicating finished status contains
            all True. Default `None`.
        output_time_major(bool, optional): Indicate the data layout of Tensor included
            in the final outputs(the first returned value of this method). If
            attr:`False`, the data layout would be batch major with shape
            `[batch_size, seq_len, ...]`.  If attr:`True`, the data layout would
            be time major with shape `[seq_len, batch_size, ...]`. Default: `False`.
J
Jiaqi Liu 已提交
1164 1165 1166 1167 1168 1169 1170
        impute_finished(bool, optional): If `True` and `decoder.tracks_own_finished`
            is False, then states get copied through for batch entries which are
            marked as finished, which differs with the unfinished using the new states
            returned by :code:`decoder.step()` and ensures that the final states have
            the correct values. Otherwise, states wouldn't be copied through when
            finished. If the returned `final_states` is needed, it should be set as
            True, which causes some slowdown. Default `False`.
1171 1172 1173 1174 1175
        is_test(bool, optional): A flag indicating whether to use test mode. In
            test mode, it is more memory saving. Default `False`.
        return_length(bool, optional):  A flag indicating whether to return an
            extra Tensor variable in the output tuple, which stores the actual
            lengths of all decoded sequences. Default `False`.
1176
        **kwargs: Additional keyword arguments. Arguments passed to `decoder.step`.
1177 1178

    Returns:
1179

Z
Zman 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
        - final_outputs (Tensor, nested structure of Tensor), each Tensor in :code:`final_outputs` is the stacked of all decoding steps' outputs, which might be revised
            by :code:`decoder.finalize()` if the decoder has implemented finalize.
            And :code:`final_outputs` has the same structure and data types as the :code:`outputs`
            returned by :code:`decoder.step()`

        - final_states (Tensor, nested structure of Tensor), :code:`final_states` is the counterpart at last time step of initial states \
            returned by :code:`decoder.initialize()` , thus has the same structure
            with it and has tensors with same shapes and data types.

        - sequence_lengths (Tensor), stores the actual lengths of all decoded sequences.
            sequence_lengths is provided only if :code:`return_length` is True.
1191 1192 1193 1194

    Examples:

        .. code-block:: python
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
            import paddle
            from paddle.nn import BeamSearchDecoder, dynamic_decode
            from paddle.nn import GRUCell, Linear, Embedding
            trg_embeder = Embedding(100, 32)
            output_layer = Linear(32, 32)
            decoder_cell = GRUCell(input_size=32, hidden_size=32)
            decoder = BeamSearchDecoder(decoder_cell,
                                        start_token=0,
                                        end_token=1,
                                        beam_size=4,
                                        embedding_fn=trg_embeder,
                                        output_fn=output_layer)
            encoder_output = paddle.ones((4, 8, 32), dtype=paddle.get_default_dtype())
            outputs = dynamic_decode(decoder=decoder,
                                    inits=decoder_cell.get_initial_states(encoder_output),
                                    max_step_num=10)
    """
J
Jiabin Yang 已提交
1213
    if _non_static_mode():
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        return _dynamic_decode_imperative(
            decoder,
            inits,
            max_step_num,
            output_time_major,
            impute_finished,
            is_test,
            return_length,
            **kwargs
        )
1224
    else:
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        return _dynamic_decode_declarative(
            decoder,
            inits,
            max_step_num,
            output_time_major,
            impute_finished,
            is_test,
            return_length,
            **kwargs
        )
1235 1236


1237
class DecodeHelper:
1238 1239 1240 1241 1242 1243 1244
    """
    DecodeHelper is the base class for any helper instance used in `BasicDecoder`.
    It provides interface to implement sampling and produce inputs for the next
    time step in dynamic decoding.
    """

    def initialize(self):
1245
        r"""
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
        DecodeHelper initialization to produce inputs for the first decoding step
        and give the initial status telling whether each sequence in the batch
        is finished. It is the partial of the initialization of `BasicDecoder`.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_finished)` ). \
                `initial_inputs` is a (possibly nested structure of) tensor \
                variable[s], and the tensor's shape is `[batch_size, ...]`. \
                `initial_finished` is a bool tensor with shape `[batch_size]`.
        """
        pass

    def sample(self, time, outputs, states):
        """
        Perform sampling with some strategies according to `outputs`. It is the
        partial of `BasicDecoder.step`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor representing the sampled ids.
        """
        pass

    def next_inputs(self, time, outputs, states, sample_ids):
1279
        r"""
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        Produce the inputs and states for next time step and give status telling
        whether each minibatch entry is finished. It is called after `sample` in
        `BasicDecoder.step`. It is the partial of `BasicDecoder.step`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.
            sample_ids(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `sample_ids` returned by `sample()`.

        Returns:
            tuple: A tuple( :code:`(finished, next_inputs, next_states)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s], and the structure, shape and \
                data type of `next_states` must be same as the input argument \
                `states`. `finished` is a bool tensor with shape `[batch_size]`.
        """
        pass


class TrainingHelper(DecodeHelper):
    """
    TrainingHelper is a subclass of DecodeHelper. It is a decoding helper
    slicing from the full sequence inputs as the inputs for corresponding
    step. And it uses `argmax` to sample from the outputs of `cell.call()`.

    Since the needs of sequence inputs, it is used mostly for teach-forcing MLE
    (maximum likelihood) training, and the sampled would not be used.

    Examples:
        .. code-block:: python
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
            trg_seq_length = fluid.data(name="trg_seq_length",
                                        shape=[None],
                                        dtype="int64")
            helper = layers.TrainingHelper(trg_emb, trg_seq_length)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper)
            outputs = layers.dynamic_decode(
                decoder,
                inits=decoder_cell.get_initial_states(trg_emb),
                is_test=False)
    """

    def __init__(self, inputs, sequence_length, time_major=False):
        """
        Constructor of TrainingHelper.

        Parameters:
1340
            inputs(Variable): A (possibly nested structure of) tensor variable[s].
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
                The shape of tensor should be `[batch_size, sequence_length, ...]`
                for `time_major == False` or `[sequence_length, batch_size, ...]`
                for `time_major == True`. It represents the inputs to be sliced
                from at every decoding step.
            sequence_length(Variable): A tensor with shape `[batch_size]`.
                It stores real length of each instance in `inputs`, by which we
                can label the finished status of each instance at every decoding
                step.
            time_major(bool, optional): Indicate the data layout of Tensor included
                in `inputs`. If `False`, the data layout would be batch major with
                shape `[batch_size, sequence_length, ...]`.  If `True`, the data
                layout would be time major with shape `[sequence_length, batch_size, ...]`.
                Default: `False`.
        """
        self.inputs = inputs
        self.sequence_length = sequence_length
        self.time_major = time_major
        # extend inputs to avoid to slice out of range in `next_inputs`
        # may be easier and have better performance than condition_op
        self.inputs_ = map_structure(
1361
            lambda x: paddle.nn.functional.pad(
1362
                x,
1363
                pad=([0, 1] + [0, 0] * (len(x.shape) - 1))
1364 1365 1366 1367 1368
                if time_major
                else ([0, 0, 0, 1] + [0, 0] * (len(x.shape) - 2)),
            ),
            self.inputs,
        )
1369 1370

    def initialize(self):
1371
        r"""
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        TrainingHelper initialization produces inputs for the first decoding
        step by slicing at the first time step of full sequence inputs, and it
        gives initial status telling whether each sequence in the batch is
        finished. It is the partial of the initialization of `BasicDecoder`.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_finished)` ). \
                `initial_inputs` is a (possibly nested structure of) tensor \
                variable[s], and the tensor's shape is `[batch_size, ...]`. \
                `initial_finished` is a bool tensor with shape `[batch_size]`.
        """
1383
        init_finished = paddle.equal(
1384
            self.sequence_length,
1385 1386 1387 1388
            tensor.fill_constant(
                shape=[1], dtype=self.sequence_length.dtype, value=0
            ),
        )
1389 1390
        # TODO: support zero length
        init_inputs = map_structure(
1391 1392
            lambda x: x[0] if self.time_major else x[:, 0], self.inputs
        )
1393 1394 1395
        return init_inputs, init_finished

    def sample(self, time, outputs, states):
1396
        r"""
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
        Perform sampling by using `argmax` according to the `outputs`. Mostly
        the sampled ids would not be used since the inputs for next decoding
        step would be got by slicing.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
1407
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor with shape `[batch_size]`, representing \
                the sampled ids.
        """
        sample_ids = tensor.argmax(outputs, axis=-1)
        return sample_ids

    def next_inputs(self, time, outputs, states, sample_ids):
1419
        r"""
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
        Generate inputs for the next decoding step by slicing at corresponding
        step of the full sequence inputs. Simultaneously, produce the states
        for next time step by directly using the input `states` and emit status
        telling whether each minibatch entry reaches to the corresponding length.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.
            sample_ids(Variable): An `int64` tensor variable shaped `[batch_size]`.
                It is same as `sample_ids` returned by `sample()`.

        Returns:
            tuple: A tuple( :code:`(finished, next_inputs, next_states)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s],  and the tensor's shape is \
                `[batch_size, ...]`. `next_states` is identical to the input \
                argument `states`. `finished` is a `bool` Tensor with \
                shape `[batch_size]`.
        """
        # TODO: compatibility of int32 and int64
1446 1447 1448 1449 1450
        time = (
            tensor.cast(time, "int32")
            if convert_dtype(time.dtype) not in ["int32"]
            else time
        )
1451 1452 1453
        if self.sequence_length.dtype != time.dtype:
            self.sequence_length = tensor.cast(self.sequence_length, time.dtype)
        next_time = time + 1
1454
        finished = paddle.less_equal(self.sequence_length, next_time)
1455 1456 1457

        def _slice(x):  # TODO: use Variable.__getitem__
            axes = [0 if self.time_major else 1]
1458
            return paddle.squeeze(
2
201716010711 已提交
1459
                paddle.slice(
1460 1461
                    x, axes=axes, starts=[next_time], ends=[next_time + 1]
                ),
1462
                axis=axes,
1463
            )
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

        next_inputs = map_structure(_slice, self.inputs_)
        return finished, next_inputs, states


class GreedyEmbeddingHelper(DecodeHelper):
    """
    GreedyEmbeddingHelper is a subclass of DecodeHelper. It is a decoding helper
    uses the argmax of the output (treated as logits) and passes the results
    through an embedding layer to get inputs for the next decoding step.

    Examples:
        .. code-block:: python
1477

1478 1479 1480 1481 1482
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
            trg_embeder = lambda x: fluid.embedding(
                x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
            output_layer = lambda x: layers.fc(x,
                                            size=10000,
                                            num_flatten_dims=len(x.shape) - 1,
                                            param_attr=fluid.ParamAttr(name=
                                                                    "output_w"),
                                            bias_attr=False)
            helper = layers.GreedyEmbeddingHelper(trg_embeder, start_tokens=0, end_token=1)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper, output_fn=output_layer)
            outputs = layers.dynamic_decode(
                decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
    """

    def __init__(self, embedding_fn, start_tokens, end_token):
1500
        r"""
1501 1502 1503
        Constructor of GreedyEmbeddingHelper.

        Parameters:
1504
            embedding_fn(callable): A functor to apply on the argmax results.
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
                Mostly it is an embedding layer to transform ids to embeddings.
                **Note that fluid.embedding should be used here rather than
                fluid.layers.embedding, since shape of ids is [batch_size].
                when using fluid.layers.embedding, must unsqueeze in embedding_fn.**
            start_tokens(Variable):  A `int64` tensor shaped `[batch_size]`,
                representing the start tokens.
            end_token(int): The end token id.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
        self.embedding_fn = embedding_fn
        self.start_tokens = start_tokens
1521 1522 1523
        self.end_token = tensor.fill_constant(
            shape=[1], dtype="int64", value=end_token
        )
1524 1525

    def initialize(self):
1526
        r"""
1527 1528
        GreedyEmbeddingHelper initialization produces inputs for the first decoding
        step by using `start_tokens` of the constructor, and gives initial
1529
        status telling whether each sequence in the batch is finished.
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
        It is the partial of the initialization of `BasicDecoder`.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_finished)` ). \
                `initial_inputs` is same as `start_tokens` of the constructor. \
                `initial_finished` is a `bool` tensor filled by False and has \
                the same shape as `start_tokens`.
        """
        # TODO: remove the restriction of force_cpu
        init_finished = tensor.fill_constant_batch_size_like(
            input=self.start_tokens,
            shape=[-1],
            dtype="bool",
            value=False,
1544 1545
            force_cpu=True,
        )
1546 1547 1548 1549
        init_inputs = self.embedding_fn(self.start_tokens)
        return init_inputs, init_finished

    def sample(self, time, outputs, states):
1550
        r"""
1551 1552 1553 1554 1555 1556 1557 1558
        Perform sampling by using `argmax` according to the `outputs`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
1559
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor with shape `[batch_size]`, representing \
                the sampled ids.
        """
        sample_ids = tensor.argmax(outputs, axis=-1)
        return sample_ids

    def next_inputs(self, time, outputs, states, sample_ids):
1571
        r"""
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
        Generate inputs for the next decoding step by applying `embedding_fn`
        to `sample_ids`. Simultaneously, produce the states for next time step
        by directly using the input `states` and emit status telling whether
        each minibatch entry gets an `end_token` sample.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.
            sample_ids(Variable): An `int64` tensor variable shaped `[batch_size]`.
                It is same as `sample_ids` returned by `sample()`.

        Returns:
            tuple: A tuple( :code:`(finished, next_inputs, next_states)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s],  and the tensor's shape is \
                `[batch_size, ...]`. `next_states` is identical to the input \
                argument `states`. `finished` is a `bool` Tensor with \
                shape `[batch_size]`.
        """
1597
        finished = paddle.equal(sample_ids, self.end_token)
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
        next_inputs = self.embedding_fn(sample_ids)
        return finished, next_inputs, states


class SampleEmbeddingHelper(GreedyEmbeddingHelper):
    """
    SampleEmbeddingHelper is a subclass of GreedyEmbeddingHelper. It is a decoding
    helper uses sampling (from a distribution) instead of argmax of the output
    (treated as logits) and passes the results through an embedding layer to get
    inputs for the next decoding step.

    Examples:
        .. code-block:: python
1611

1612 1613 1614 1615 1616
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
1617

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
            trg_embeder = lambda x: fluid.embedding(
                x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
            output_layer = lambda x: layers.fc(x,
                                            size=10000,
                                            num_flatten_dims=len(x.shape) - 1,
                                            param_attr=fluid.ParamAttr(name=
                                                                    "output_w"),
                                            bias_attr=False)
            helper = layers.SampleEmbeddingHelper(trg_embeder, start_tokens=0, end_token=1)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper, output_fn=output_layer)
            outputs = layers.dynamic_decode(
                decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
    """

1633 1634 1635 1636 1637 1638 1639 1640
    def __init__(
        self,
        embedding_fn,
        start_tokens,
        end_token,
        softmax_temperature=None,
        seed=None,
    ):
1641
        r"""
1642 1643 1644
        Constructor of SampleEmbeddingHelper.

        Parameters:
1645
            embedding_fn(callable): A functor to apply on the argmax results.
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
                Mostly it is an embedding layer to transform ids to embeddings.
                **Note that fluid.embedding should be used here rather than
                fluid.layers.embedding, since shape of ids is [batch_size].
                when using fluid.layers.embedding, must unsqueeze in embedding_fn.**
            start_tokens(Variable):  A `int64` tensor shaped `[batch_size]`,
                representing the start tokens.
            end_token(int): The end token id.
            softmax_temperature(float, optional): the value to divide the logits
                by before computing the softmax. Higher temperatures (above 1.0)
                lead to more random, while lower temperatures push the sampling
                distribution towards the argmax. It must be strictly greater than
                0. Defaults to None, meaning using a temperature valued 1.0.
            seed: (int, optional) The sampling seed. Defaults to None, meaning not
                to use fixed seed.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
1667
        super().__init__(embedding_fn, start_tokens, end_token)
1668 1669 1670 1671 1672 1673 1674
        self.softmax_temperature = (
            tensor.fill_constant(
                shape=[1], dtype="float32", value=softmax_temperature
            )
            if softmax_temperature is not None
            else None
        )
1675 1676 1677
        self.seed = seed


1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
def dynamic_lstm(
    input,
    size,
    h_0=None,
    c_0=None,
    param_attr=None,
    bias_attr=None,
    use_peepholes=True,
    is_reverse=False,
    gate_activation='sigmoid',
    cell_activation='tanh',
    candidate_activation='tanh',
    dtype='float32',
    name=None,
):
1693
    r"""
1694
	:api_attr: Static Graph
S
swtkiwi 已提交
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    **Note**:
        1. This OP only supports LoDTensor as inputs. If you need to deal with Tensor, please use :ref:`api_fluid_layers_lstm` .
        2. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.

    The implementation of this OP include diagonal/peephole connections.
    Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
    If you do not need peephole connections, please set use_peepholes to False .

    This OP computes each timestep as follows:

    .. math::
      i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
    .. math::
      f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
    .. math::
      o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
    .. math::
      \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
    .. math::
      c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
    .. math::
      h_t = o_t \odot tanh(c_t)

    The symbolic meanings in the formula are as follows:

    - :math:`x_{t}` represents the input at timestep :math:`t`
    - :math:`h_{t}` represents the hidden state at timestep :math:`t`
    - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
    - :math:`\widetilde{c_t}` represents the candidate cell state
    - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
    - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
    - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
    - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
    - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension

    Parameters:
        input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
        size (int): must be 4 * hidden_size.
        h_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
                       Data type is float32 or float64. If set to None, it will be a vector of all 0. Default: None.
        c_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
                       Data type is float32 or float64. If set to None, it will be a vector of all 0. `h_0` and `c_0` can be None but only at the same time. Default: None.
        param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
                              If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.

                              - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [hidden_size, 4*hidden_size].

        bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
                              Please refer to ref:`api_fluid_ParamAttr' . Default: None.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is [1, 4*hidden_size].
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is [1, 7*hidden_size].
1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
        use_peepholes (bool, optional): Whether to use peephole connection or not. Default: True.
        is_reverse (bool, optional): Whether to calculate reverse LSTM. Default: False.
        gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default: "sigmoid".
        cell_activation (str, optional): The activation for cell output. Default: "tanh".
        candidate_activation (str, optional): The activation for candidate hidden state. Default: "tanh".
        dtype (str, optional): Data type, can be "float32" or "float64". Default: "float32".
        name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.

    Returns:
        tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :

            The hidden state and cell state of LSTM

                - hidden: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.
                - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.

    Examples:
        .. code-block:: python
1775

1776 1777 1778 1779
            import paddle.fluid as fluid
            emb_dim = 256
            vocab_size = 10000
            hidden_dim = 512
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
            data = fluid.data(name='x', shape=[None], dtype='int64', lod_level=1)
            emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
                                           bias_attr=False)

            forward, cell = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
            forward.shape  # (-1, 512)
            cell.shape  # (-1, 512)
    """
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
    assert (
        _non_static_mode() is not True
    ), "please use lstm instead of dynamic_lstm in dygraph mode!"
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in dynamic_lstm."

    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'dynamic_lstm'
    )
1802 1803 1804

    check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_lstm')
    if isinstance(h_0, Variable):
1805 1806 1807
        check_variable_and_dtype(
            h_0, 'h_0', ['float32', 'float64'], 'dynamic_lstm'
        )
1808 1809 1810

    check_type(c_0, 'c_0', (Variable, type(None)), 'dynamic_lstm')
    if isinstance(c_0, Variable):
1811 1812 1813
        check_variable_and_dtype(
            c_0, 'c_0', ['float32', 'float64'], 'dynamic_lstm'
        )
1814

1815 1816
    helper = LayerHelper('lstm', **locals())
    size = size // 4
1817 1818 1819
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype
    )
1820 1821 1822
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
1823 1824 1825
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
    )
1826 1827 1828 1829 1830 1831 1832 1833

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
1834
        assert h_0.shape == (batch_size, size), (
1835
            'The shape of h0 should be (batch_size, %d)' % size
1836
        )
1837 1838
        inputs['H0'] = h_0
    if c_0:
1839
        assert c_0.shape == (batch_size, size), (
1840
            'The shape of c0 should be (batch_size, %d)' % size
1841
        )
1842 1843
        inputs['C0'] = c_0

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act,
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
        },
    )
1861 1862 1863
    return hidden, cell


1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
@deprecated(
    since='2.0.0',
    update_to='paddle.nn.LSTM',
    reason="This API may occur CUDNN errors.",
)
def lstm(
    input,
    init_h,
    init_c,
    max_len,
    hidden_size,
    num_layers,
    dropout_prob=0.0,
    is_bidirec=False,
    is_test=False,
    name=None,
    default_initializer=None,
    seed=-1,
):
1883
    r"""
1884
	:api_attr: Static Graph
S
swtkiwi 已提交
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
    **Note**:
        This OP only supports running on GPU devices.

    This OP implements LSTM operation - `Hochreiter, S., & Schmidhuber, J. (1997) <http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf>`_ .

    The implementation of this OP does not include diagonal/peephole connections.
    Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
    If you need peephole connections, please use :ref:`api_fluid_layers_dynamic_lstm` .

    This OP computes each timestep as follows:

    .. math::
      i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
    .. math::
      f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
    .. math::
      o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
    .. math::
      \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
    .. math::
      c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
    .. math::
      h_t = o_t \odot tanh(c_t)

    The symbolic meanings in the formula are as follows:

    - :math:`x_{t}` represents the input at timestep :math:`t`
    - :math:`h_{t}` represents the hidden state at timestep :math:`t`
    - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
    - :math:`\widetilde{c_t}` represents the candidate cell state
    - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
    - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
    - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
    - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
    - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension

    Parameters:
        input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, 3-D Tensor of shape :math:`[batch\_size, seq\_len, input\_dim]` . Data type is float32 or float64
        init_h( :ref:`api_guide_Variable_en` ): The initial hidden state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
                       If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
G
GaoWei8 已提交
1926
        max_len (int): This parameter has no effect and will be discarded.
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
        init_c( :ref:`api_guide_Variable_en` ): The initial cell state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
                       If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
        hidden_size (int): hidden size of the LSTM.
        num_layers (int): total layers number of the LSTM.
        dropout_prob(float, optional): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers.
                             Default: 0.0.
        is_bidirec (bool, optional): If it is bidirectional. Default: False.
        is_test (bool, optional): If it is in test phrase. Default: False.
        name (str, optional): A name for this layer. If set None, the layer
                         will be named automatically. Default: None.
        default_initializer(Initializer, optional): Where use initializer to initialize the Weight
T
tianshuo78520a 已提交
1939
                         If set None, default initializer will be used. Default: None.
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
        seed(int, optional): Seed for dropout in LSTM, If it's -1, dropout will use random seed. Default: 1.


    Returns:
        tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ) :

                        Three tensors, rnn_out, last_h, last_c:

                        - rnn_out is result of LSTM hidden, shape is :math:`[seq\_len, batch\_size, hidden\_size]` \
                          if is_bidirec set to True, shape will be :math:`[seq\_len, batch\_size, hidden\_size*2]`
                        - last_h is the hidden state of the last step of LSTM \
                          shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
                          if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
                          if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`


    Examples:
        .. code-block:: python
1960

1961
            import paddle
1962 1963
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
1964
            paddle.enable_static()
1965 1966 1967 1968 1969

            emb_dim = 256
            vocab_size = 10000
            data = fluid.data(name='x', shape=[None, 100], dtype='int64')
            emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
1970
            batch_size = 100
1971 1972 1973 1974
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
1975
            max_len = 12
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
            rnn_out.shape  # (-1, 100, 150)
            last_h.shape  # (1, 20, 150)
            last_c.shape  # (1, 20, 150)
    """

    helper = LayerHelper('cudnn_lstm', **locals())
X
Xing Wu 已提交
1987 1988 1989 1990 1991 1992
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'lstm')
    check_variable_and_dtype(init_h, 'init_h', ['float32', 'float64'], 'lstm')
    check_variable_and_dtype(init_c, 'init_c', ['float32', 'float64'], 'lstm')
    check_type(max_len, 'max_len', (int), 'lstm')
    check_type(hidden_size, 'hidden_size', (int), 'lstm')
    check_type(num_layers, 'num_layers', (int), 'lstm')
1993 1994 1995 1996
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
    weight_size = 0
G
GaoWei8 已提交
1997 1998
    num_dirrection = 2 if is_bidirec == True else 1

1999 2000
    for i in range(num_layers):
        if i == 0:
G
GaoWei8 已提交
2001
            input_weight_size = (input_size * hidden_size) * 4 * num_dirrection
2002
        else:
G
GaoWei8 已提交
2003 2004
            input_weight_size = (hidden_size * hidden_size) * 4 * num_dirrection
        hidden_weight_size = (hidden_size * hidden_size) * 4 * num_dirrection
2005

G
GaoWei8 已提交
2006 2007
        weight_size += input_weight_size + hidden_weight_size
        weight_size += hidden_size * 8 * num_dirrection
2008

2009 2010 2011 2012 2013 2014
    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer,
    )
2015 2016 2017 2018

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)
G
GaoWei8 已提交
2019
    reserve = helper.create_variable_for_type_inference(
2020 2021
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
G
GaoWei8 已提交
2022
    state_out = helper.create_variable_for_type_inference(
2023 2024
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
G
GaoWei8 已提交
2025
    state_out.persistable = True
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
        },
        outputs={
            'Out': out,
            'LastH': last_h,
            'LastC': last_c,
            'Reserve': reserve,
            'StateOut': state_out,
        },
        attrs={
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        },
    )
2052 2053 2054
    return out, last_h, last_c


2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
def dynamic_lstmp(
    input,
    size,
    proj_size,
    param_attr=None,
    bias_attr=None,
    use_peepholes=True,
    is_reverse=False,
    gate_activation='sigmoid',
    cell_activation='tanh',
    candidate_activation='tanh',
    proj_activation='tanh',
    dtype='float32',
    name=None,
    h_0=None,
    c_0=None,
    cell_clip=None,
    proj_clip=None,
):
2074
    r"""
2075
	:api_attr: Static Graph
S
swtkiwi 已提交
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
    **Note**:
        1. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.

    This OP implements the LSTMP (LSTM Projected) layer.
    The LSTMP layer has a separate linear mapping layer behind the LSTM layer. -- `Sak, H., Senior, A., & Beaufays, F. (2014) <https://ai.google/research/pubs/pub43905.pdf>`_ .

    Compared with the standard LSTM layer, LSTMP has an additional linear mapping layer,
    which is used to map from the original hidden state :math:`h_t` to the lower dimensional state :math:`r_t` .
    This reduces the total number of parameters and computational complexity, especially when the output unit is relatively large.

    The default implementation of the OP contains diagonal/peephole connections,
    please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
    If you need to disable the peephole connections, set use_peepholes to False.

    This OP computes each timestep as follows:

    .. math::
      i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
    .. math::
          f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
    .. math::
          o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_{t-1} + b_o)
    .. math::
          \widetilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
    .. math::
          c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
    .. math::
          h_t = o_t \odot act_h(c_t)
    .. math::
          r_t = \overline{act_h}(W_{rh}h_t)

    The symbolic meanings in the formula are as follows:

    - :math:`x_{t}` represents the input at timestep :math:`t`
    - :math:`h_{t}` represents the hidden state at timestep :math:`t`
    - :math:`r_{t}` : represents the state of the projected output of the hidden state :math:`h_{t}`
    - :math:`h_{t-1}, c_{t-1}, r_{t-1}` represent the hidden state, cell state and projected output at timestep :math:`t-1` , respectively
    - :math:`\widetilde{c_t}` represents the candidate cell state
    - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
    - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
    - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
    - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
    - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension

    Parameters:
        input( :ref:`api_guide_Variable_en` ): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence.
                         It is a multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
        size(int): must be 4 * hidden_size.
        proj_size(int): The size of projection output.
        param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
                              If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.

                              - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [P, 4*hidden_size] , where P is the projection size.
                              - Projection weight  = :math:`\{ W_{rh} \}` , the shape is [hidden_size, P].

        bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
                              Please refer to ref:`api_fluid_ParamAttr' . Default: None.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is [1, 4*hidden_size].
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is [1, 7*hidden_size].

        use_peepholes (bool, optional): Whether to use peephole connection or not. Default True.
        is_reverse (bool, optional): Whether to calculate reverse LSTM. Default False.
        gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default "sigmoid".
        cell_activation (str, optional): The activation for cell output. Default "tanh".
        candidate_activation (str, optional): The activation for candidate hidden state. Default "tanh".
        proj_activation(str, optional): The activation for projection output. Default "tanh".
        dtype (str, optional): Data type, can be "float32" or "float64". Default "float32".
        name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.
        h_0( :ref:`api_guide_Variable` , optional): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size. Default: None.
        c_0( :ref:`api_guide_Variable` , optional): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size.
                       `h_0` and `c_0` can be None but only at the same time. Default: None.
        cell_clip(float, optional): If not None, the cell state is clipped
                             by this value prior to the cell output activation. Default: None.
        proj_clip(float, optional): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`. Default: None.

    Returns:
        tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :

                The hidden state and cell state of LSTMP

                - hidden: LoDTensor with shape of :math:`[T, P]` , and its lod and dtype is the same as the input.
                - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            dict_dim, emb_dim = 128, 64
            data = fluid.data(name='sequence', shape=[None], dtype='int64', lod_level=1)
            emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim, proj_dim = 512, 256
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
                                    act=None, bias_attr=None)
            proj_out, last_c = fluid.layers.dynamic_lstmp(input=fc_out,
                                                    size=hidden_dim * 4,
                                                    proj_size=proj_dim,
                                                    use_peepholes=False,
                                                    is_reverse=True,
                                                    cell_activation="tanh",
                                                    proj_activation="tanh")
            proj_out.shape  # (-1, 256)
            last_c.shape  # (-1, 512)
    """

2196 2197 2198
    assert (
        _non_static_mode() is not True
    ), "please use lstm instead of dynamic_lstmp in dygraph mode!"
2199

2200 2201 2202
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in dynamic_lstmp."
2203

2204 2205 2206
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'dynamic_lstmp'
    )
2207 2208 2209

    check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_lstmp')
    if isinstance(h_0, Variable):
2210 2211 2212
        check_variable_and_dtype(
            h_0, 'h_0', ['float32', 'float64'], 'dynamic_lstmp'
        )
2213 2214 2215

    check_type(c_0, 'c_0', (Variable, type(None)), 'dynamic_lstmp')
    if isinstance(c_0, Variable):
2216 2217 2218
        check_variable_and_dtype(
            c_0, 'c_0', ['float32', 'float64'], 'dynamic_lstmp'
        )
2219

2220 2221
    helper = LayerHelper('lstmp', **locals())
    size = size // 4
2222 2223 2224 2225 2226 2227
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype
    )
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype
    )
2228 2229 2230
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
2231 2232 2233
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
    )
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
2245
        'Bias': bias,
2246 2247 2248
    }
    batch_size = input.shape[0]
    if h_0:
2249
        assert h_0.shape == (batch_size, proj_size), (
2250
            'The shape of h0 should be (batch_size, %d)' % proj_size
2251
        )
2252 2253
        inputs['H0'] = h_0
    if c_0:
2254
        assert c_0.shape == (batch_size, size), (
2255
            'The shape of c0 should be (batch_size, %d)' % size
2256
        )
2257 2258 2259
        inputs['C0'] = c_0

    if cell_clip:
T
tianshuo78520a 已提交
2260
        assert cell_clip >= 0, "cell_clip should not be negative."
2261
    if proj_clip:
T
tianshuo78520a 已提交
2262
        assert proj_clip >= 0, "proj_clip should not be negative."
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
    helper.append_op(
        type='lstmp',
        inputs=inputs,
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act,
        },
        attrs={
            'use_peepholes': use_peepholes,
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation,
        },
    )
2285 2286 2287
    return projection, cell


2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
def dynamic_gru(
    input,
    size,
    param_attr=None,
    bias_attr=None,
    is_reverse=False,
    gate_activation='sigmoid',
    candidate_activation='tanh',
    h_0=None,
    origin_mode=False,
):
2299
    r"""
2300
	:api_attr: Static Graph
S
swtkiwi 已提交
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
    **Note: The input type of this must be LoDTensor. If the input type to be
    processed is Tensor, use** :ref:`api_fluid_layers_StaticRNN` .

    This operator is used to perform the calculations for a single layer of
    Gated Recurrent Unit (GRU) on full sequences step by step. The calculations
    in one time step support these two modes:

    If ``origin_mode`` is True, then the formula used is from paper
    `Learning Phrase Representations using RNN Encoder Decoder for Statistical
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}


    if ``origin_mode`` is False, then the formula used is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling  <https://arxiv.org/pdf/1412.3555.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}

    :math:`x_t` is the input of current time step, but it is not from ``input`` .
    This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
    **Note** thus a fully-connect layer whose size is 3 times of ``size`` should
    be used before this operator, and the output should be used as ``input`` here.
2342
    :math:`h_{t-1}` is the hidden state from previous time step.
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
    :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
    update gate, reset gate, candidate hidden and hidden output separately.
    :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
    the weight matrix and bias used in update gate, reset gate, candidate hidden
    calculations. For implementation, the three weight matrix are merged into a
    tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
    a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
    hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
    are concatenated with shape :math:`[D, D  \\times 2]` lying on the first part,
    and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .


    Args:
        input(Variable): A LoDTensor whose lod level is 1, representing the input
            after linear projection. Its shape should be :math:`[T, D \\times 3]` ,
            where :math:`T` stands for the total sequence lengths in this mini-batch,
            :math:`D` for the hidden size. The data type should be float32 or float64.
        size(int): Indicate the hidden size.
        param_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        is_reverse(bool, optional): Whether to compute in the reversed order of
            input sequences. Default False.
T
tianshuo78520a 已提交
2369
        gate_activation(str, optional): The activation function corresponding to
2370 2371
            :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "sigmoid".
T
tianshuo78520a 已提交
2372
        candidate_activation(str, optional): The activation function corresponding to
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
            :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "tanh".
        h_0 (Variable, optional): A Tensor representing the initial hidden state.
            It not provided, the default initial hidden state is 0. The shape is
            :math:`[N, D]` , where :math:`N` is the number of sequences in the
            mini-batch, :math:`D` for the hidden size. The data type should be
            same as ``input`` . Default None.

    Returns:
        Variable: A LoDTensor whose lod level is 1 and shape is :math:`[T, D]` , \
            where :math:`T` stands for the total sequence lengths in this mini-batch \
            :math:`D` for the hidden size. It represents GRU transformed sequence output, \
            and has the same lod and data type with ``input`` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.data(name='sequence',
                      shape=[None],
                      dtype='int64',
                      lod_level=1)
            emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
    """

2404 2405 2406
    assert (
        _non_static_mode() is not True
    ), "please use gru instead of dynamic_gru in dygraph mode!"
2407

2408 2409 2410
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'dynamic_gru'
    )
2411 2412 2413

    check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_gru')
    if isinstance(h_0, Variable):
2414 2415 2416
        check_variable_and_dtype(
            h_0, 'h_0', ['float32', 'float64'], 'dynamic_gru'
        )
2417

2418 2419 2420
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

2421 2422 2423 2424 2425 2426
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True
    )
2427 2428 2429
    batch_size = input.shape[0]
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0:
2430 2431 2432
        assert h_0.shape == (batch_size, size), (
            'The shape of h0 should be(batch_size, %d)' % size
        )
2433 2434 2435 2436 2437 2438 2439
        inputs['H0'] = h_0

    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden,
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation,
            'origin_mode': origin_mode,
        },
    )
2456 2457 2458
    return hidden


2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
def gru_unit(
    input,
    hidden,
    size,
    param_attr=None,
    bias_attr=None,
    activation='tanh',
    gate_activation='sigmoid',
    origin_mode=False,
):
2469
    r"""
2470
	:api_attr: Static Graph
S
swtkiwi 已提交
2471

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
    Gated Recurrent Unit (GRU) RNN cell. This operator performs GRU calculations for
    one time step and it supports these two modes:

    If ``origin_mode`` is True, then the formula used is from paper
    `Learning Phrase Representations using RNN Encoder Decoder for Statistical
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}


    if ``origin_mode`` is False, then the formula used is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling  <https://arxiv.org/pdf/1412.3555.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}

    :math:`x_t` is the input of current time step, but it is not ``input`` .
    This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
    **Note** thus a fully-connect layer whose size is 3 times of GRU hidden size should
    be used before this operator, and the output should be used as ``input`` here.
2508
    :math:`h_{t-1}` is the hidden state from previous time step.
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
    :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
    update gate, reset gate, candidate hidden and hidden output separately.
    :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
    the weight matrix and bias used in update gate, reset gate, candidate hidden
    calculations. For implementation, the three weight matrix are merged into a
    tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
    a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
    hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
    are concatenated with shape :math:`[D, D  \\times 2]` lying on the first part,
    and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .


    Args:
        input(Variable): A 2D Tensor representing the input after linear projection
            after linear projection. Its shape should be :math:`[N, D \\times 3]` ,
            where :math:`N` stands for batch size, :math:`D` for the hidden size.
            The data type should be float32 or float64.
        hidden(Variable): A 2D Tensor representing the hidden state from previous step.
            Its shape should be :math:`[N, D]` , where :math:`N` stands for batch size,
            :math:`D` for the hidden size. The data type should be same as ``input`` .
        size(int): Indicate the hidden size.
        param_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
T
tianshuo78520a 已提交
2536
        activation(str, optional): The activation function corresponding to
2537 2538
            :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "tanh".
T
tianshuo78520a 已提交
2539
        gate_activation(str, optional): The activation function corresponding to
2540 2541 2542 2543 2544 2545
            :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "sigmoid".

    Returns:
        tuple: The tuple contains three Tensor variables with the same data type \
            as ``input`` . They represent the hidden state for next time step ( :math:`h_t` ), \
T
tianshuo78520a 已提交
2546
            reset previous hidden state ( :math:`r_t \odot h_{t-1}` ), and the \
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
            concatenation of :math:`h_t, r_t, \\tilde{h_t}` . And they have shape \
            :math:`[N, D]` , :math:`[N, D]` , :math:`[N, D \times 3]` separately. \
            Usually only the hidden state for next time step ( :math:`h_t` ) is used \
            as output and state, the other two are intermediate results of calculations.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.data(name='step_data', shape=[None], dtype='int64')
            emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.data(
                name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)

    """
X
Xing Wu 已提交
2569
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'gru_unit')
2570 2571 2572
    check_variable_and_dtype(
        hidden, 'hidden', ['float32', 'float64'], 'gru_unit'
    )
X
Xing Wu 已提交
2573
    check_type(size, 'size', (int), 'gru_unit')
2574 2575 2576 2577
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
2578 2579
        relu=3,
    )
2580 2581 2582 2583 2584 2585 2586 2587
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size // 3

    # create weight
2588 2589 2590
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype
    )
2591 2592 2593 2594 2595 2596 2597 2598

    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
    # create bias
    if helper.bias_attr:
        bias_size = [1, 3 * size]
2599 2600 2601
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
        inputs['Bias'] = bias

    helper.append_op(
        type='gru_unit',
        inputs=inputs,
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
2615 2616 2617
            'origin_mode': origin_mode,
        },
    )
2618 2619 2620 2621

    return updated_hidden, reset_hidden_pre, gate


2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
def beam_search(
    pre_ids,
    pre_scores,
    ids,
    scores,
    beam_size,
    end_id,
    level=0,
    is_accumulated=True,
    name=None,
    return_parent_idx=False,
):
2634
    r"""
S
swtkiwi 已提交
2635

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.

    **This operator only supports LoDTensor.** It is used after finishing
    scores calculation to perform beam search for one time step. Specifically,
    after ``ids`` and ``scores`` have been produced, it selects the top-K
    ( `k` is ``beam_size`` ) candidate word ids of current step from ``ids``
T
tianshuo78520a 已提交
2646
    according to the corresponding ``scores``. Additionally, ``pre_id`` and
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
    ``pre_scores`` are the output of `beam_search` at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if ``is_accumulated`` is True, the ``scores`` passed in should
    be accumulated scores. Otherwise, the ``scores`` are
    considered as the probabilities of single step and would be transformed to
    the log field and added up with ``pre_scores`` for final scores in this
    operator. Length penalty should be done with extra operators before calculating
    the accumulated scores if needed.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py

    Args:
        pre_ids(Variable): A LodTensor variable (lod level is 2), representing
            the selected ids of previous step. It is the output of beam_search
            at previous step. Its shape is `[batch_size, 1]` and its lod is
            `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step. The data type should be int64.
        pre_scores(Variable): A LodTensor variable has the same shape and lod
            with ``pre_ids`` , representing the accumulated scores corresponding
            to the selected ids of previous step. It is the output of
X
Xing Wu 已提交
2670
            beam_search at previous step. The data type should be float32 or float64.
2671 2672 2673 2674 2675
        ids(Variable|None): A LodTensor variable containing the candidates ids.
            It has the same lod with ``pre_ids`` and its shape should be
            `[batch_size * beam_size, K]`, where `K` supposed to be greater than
            ``beam_size`` and the first dimension size (decrease as samples reach
            to the end) should be same as that of ``pre_ids`` . The data type
T
tianshuo78520a 已提交
2676
            should be int64. It can be None, which use index in ``scores`` as
2677 2678 2679
            ids.
        scores(Variable): A LodTensor variable containing the accumulated
            scores corresponding to ``ids`` . Both its shape and lod are same as
X
Xing Wu 已提交
2680
            those of ``ids`` . The data type should be float32 or float64.
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int): **It can be ignored and mustn't change currently.**
            The 2 level lod used in this operator has the following
            meaning: The first level describes how many beams each sample has,
            which would change to 0 when beams of the sample all end (batch reduce);
            The second level describes how many times each beam is selected.
            Default 0, which shouldn't be changed currently.
        is_accumulated(bool): Whether the input ``score`` is accumulated scores.
            Default True.
2691 2692
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
2693 2694
            None by default.
        return_parent_idx(bool, optional): Whether to return an extra Tensor variable
T
tianshuo78520a 已提交
2695
            in output, which stores the selected ids' parent index in
2696 2697 2698 2699 2700 2701 2702 2703
            ``pre_ids`` and can be used to update RNN's states by gather operator.
            Default False.

    Returns:
        tuple: The tuple contains two or three LodTensor variables. The two LodTensor, \
            representing the selected ids and the corresponding accumulated scores of \
            current step, have the same shape `[batch_size, beam_size]` and lod with 2 levels, \
            and have data types int64 and float32. If ``return_parent_idx`` is True, \
T
tianshuo78520a 已提交
2704
            an extra Tensor variable preserving the selected ids' parent index \
2705 2706 2707 2708 2709 2710 2711
            is included, whose shape is `[batch_size * beam_size]` and data type \
            is int64.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2712 2713
            import paddle
            paddle.enable_static()
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            beam_size = 4
            end_id = 1
            pre_ids = fluid.data(
                name='pre_id', shape=[None, 1], lod_level=2, dtype='int64')
            pre_scores = fluid.data(
                name='pre_scores', shape=[None, 1], lod_level=2, dtype='float32')
            probs = fluid.data(
                name='probs', shape=[None, 10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
2728 2729
                x=paddle.log(x=topk_scores),
                y=paddle.reshape(pre_scores, shape=[-1]),
2730 2731 2732 2733 2734 2735 2736 2737 2738
                axis=0)
            selected_ids, selected_scores = fluid.layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
2739
    check_variable_and_dtype(pre_ids, 'pre_ids', ['int64'], 'beam_search')
2740 2741 2742
    check_variable_and_dtype(
        pre_scores, 'pre_scores', ['float32', 'float64'], 'beam_search'
    )
2743
    check_type(ids, 'ids', (Variable, type(None)), 'beam_search')
2744 2745 2746
    check_variable_and_dtype(
        scores, 'scores', ['float32', 'float64'], 'beam_search'
    )
2747 2748 2749 2750 2751 2752 2753 2754 2755
    helper = LayerHelper('beam_search', **locals())
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids

    selected_scores = helper.create_variable_for_type_inference(
2756 2757
        dtype=score_type
    )
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")

    helper.append_op(
        type='beam_search',
        inputs=inputs,
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
2771
            'parent_idx': parent_idx,
2772 2773 2774 2775 2776 2777 2778
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
            'is_accumulated': is_accumulated,
2779 2780
        },
    )
2781 2782 2783 2784 2785 2786 2787
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores


def beam_search_decode(ids, scores, beam_size, end_id, name=None):
2788
    r"""
S
swtkiwi 已提交
2789

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    This operator is used after beam search has completed. It constructs the
    full predicted sequences for each sample by walking back along the search
    paths stored in lod of ``ids`` . The result sequences are stored in a
    LoDTensor, which uses the following way to parse:

    .. code-block:: text

        If lod = [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]

        The first level of lod stands for: There are 2 samples each having 3
        (beam width) predicted sequence.

        The second level of lod stands for: The lengths of the first sample's
        3 predicted sequences are 12, 12, 16; The lengths of the second sample's
        3 predicted sequences are 14, 13, 15.


    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py

    Args:
        ids(Variable): The LoDTensorArray variable containing the selected ids
            of all steps. Each LoDTensor in it has int64 data type and 2 level
            lod which can be used to get the search paths.
        scores(Variable): The LodTensorArray variable containing the accumulated
            scores corresponding to selected ids of all steps. It has the same size
            as ``ids`` . Each LoDTensor in it has the same shape and lod as the
            counterpart in ``ids`` , and has a float32 data type.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
2820 2821
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
2822 2823 2824 2825
            None by default.

    Returns:
        tuple: The tuple contains two LodTensor variables. The two LodTensor, \
T
tianshuo78520a 已提交
2826
            containing the full sequences of ids and the corresponding accumulated \
2827 2828 2829 2830 2831 2832 2833 2834
            scores, have the same shape flattened to 1D and have the same 2 level \
            lod. The lod can be used to get how many predicted sequences each sample \
            has and how many ids each predicted sequence has.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2835 2836
            import paddle
            paddle.enable_static()
2837 2838 2839 2840 2841 2842 2843
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
2844
    check_variable_and_dtype(ids, 'ids', ['int64'], 'beam_search_encode')
2845 2846 2847
    check_variable_and_dtype(
        scores, 'scores', ['float32'], 'beam_search_encode'
    )
2848 2849
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
2850
    sentence_scores = helper.create_variable_for_type_inference(
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
        dtype=scores.dtype
    )

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids, "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores,
        },
        attrs={"beam_size": beam_size, "end_id": end_id},
    )
2863 2864 2865 2866

    return sentence_ids, sentence_scores


2867 2868 2869 2870 2871 2872 2873 2874 2875
def lstm_unit(
    x_t,
    hidden_t_prev,
    cell_t_prev,
    forget_bias=0.0,
    param_attr=None,
    bias_attr=None,
    name=None,
):
2876
    r"""
2877
	:api_attr: Static Graph
S
swtkiwi 已提交
2878

2879 2880 2881 2882 2883 2884
    Long-Short Term Memory (LSTM) RNN cell. This operator performs LSTM calculations for
    one time step, whose implementation is based on calculations described in `RECURRENT
    NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_  .

    We add forget_bias to the biases of the forget gate in order to
    reduce the scale of forgetting. The formula is as follows:
2885

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
    .. math::

        i_{t} & = \sigma(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = \sigma(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} tanh (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = \sigma(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} tanh (c_{t})

    :math:`x_{t}` stands for ``x_t`` , corresponding to the input of current time step;
    :math:`h_{t-1}` and :math:`c_{t-1}` correspond to ``hidden_t_prev`` and ``cell_t_prev`` ,
    representing the output of from previous time step.
    :math:`i_{t}, f_{t}, c_{t}, o_{t}, h_{t}` are input gate, forget gate, cell, output gate
    and hidden calculation.

    Args:
        x_t(Variable): A 2D Tensor representing the input of current time step.
            Its shape should be :math:`[N, M]` , where :math:`N` stands for batch
            size, :math:`M` for the feature size of input. The data type should
            be float32 or float64.
        hidden_t_prev(Variable): A 2D Tensor representing the hidden value from
            previous step. Its shape should be :math:`[N, D]` , where :math:`N`
            stands for batch size, :math:`D` for the hidden size. The data type
            should be same as ``x_t`` .
        cell_t_prev(Variable): A 2D Tensor representing the cell value from
            previous step. It has the same shape and data type with ``hidden_t_prev`` .
        forget_bias (float, optional): :math:`forget\\_bias` added to the biases
            of the forget gate. Default 0.
        param_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
2923 2924
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
            None by default.

    Returns:
        tuple: The tuple contains two Tensor variables with the same shape and \
            data type with ``hidden_t_prev`` , representing the hidden value and \
            cell value which correspond to :math:`h_{t}` and :math:`c_{t}` in \
            the formula.

    Raises:
        ValueError: Rank of x_t must be 2.
        ValueError: Rank of hidden_t_prev must be 2.
        ValueError: Rank of cell_t_prev must be 2.
        ValueError: The 1st dimensions of x_t, hidden_t_prev and cell_t_prev must be the same.
        ValueError: The 2nd dimensions of hidden_t_prev and cell_t_prev must be the same.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.data(name='step_data', shape=[None], dtype='int64')
            x = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.data(
                name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
            pre_cell = fluid.data(
                name='pre_cell', shape=[None, hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())
X
Xing Wu 已提交
2959
    check_variable_and_dtype(x_t, 'x_t', ['float32', 'float64'], 'lstm_unit')
2960 2961 2962 2963 2964 2965
    check_variable_and_dtype(
        hidden_t_prev, 'hidden_t_prev', ['float32', 'float64'], 'lstm_unit'
    )
    check_variable_and_dtype(
        cell_t_prev, 'cell_t_prev', ['float32', 'float64'], 'lstm_unit'
    )
2966 2967 2968 2969 2970 2971 2972 2973 2974
    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

2975 2976 2977 2978 2979 2980 2981 2982
    if (
        x_t.shape[0] != hidden_t_prev.shape[0]
        or x_t.shape[0] != cell_t_prev.shape[0]
    ):
        raise ValueError(
            "The 1st dimensions of x_t, hidden_t_prev and "
            "cell_t_prev must be the same."
        )
2983 2984

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
2985 2986 2987 2988
        raise ValueError(
            "The 2nd dimensions of hidden_t_prev and "
            "cell_t_prev must be the same."
        )
2989 2990 2991 2992 2993 2994

    if bias_attr is None:
        bias_attr = ParamAttr()

    size = cell_t_prev.shape[1]
    concat_out = nn.concat(input=[x_t, hidden_t_prev], axis=1)
2995 2996 2997 2998 2999 3000
    fc_out = nn.fc(
        input=concat_out,
        size=4 * size,
        param_attr=param_attr,
        bias_attr=bias_attr,
    )
3001 3002 3003 3004
    dtype = x_t.dtype
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)

3005 3006 3007 3008 3009 3010
    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out, "C_prev": cell_t_prev},
        outputs={"C": c, "H": h},
        attrs={"forget_bias": forget_bias},
    )
3011 3012

    return h, c