paddle_analysis_config.h 21.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
34
#include "paddle_infer_declare.h"  // NOLINT
35

36
/*! \file */
37 38 39 40
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
41 42 43
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
44 45 46 47

namespace paddle {

class AnalysisPredictor;
48
struct MkldnnQuantizerConfig;
49

50
///
51
/// \brief configuration manager for AnalysisPredictor.
52 53
/// \since 1.7.0
///
54
/// AnalysisConfig manages configurations of AnalysisPredictor.
55 56 57 58 59
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
60 61
/// AnalysisConfig,
/// and loading it into AnalysisPredictor.
62
///
63
struct PD_INFER_DECL AnalysisConfig {
64
  AnalysisConfig() = default;
65
  ///
66 67
  /// \brief Construct a new AnalysisConfig from another
  /// AnalysisConfig.
68
  ///
69
  /// \param[in] other another AnalysisConfig
70
  ///
71
  explicit AnalysisConfig(const AnalysisConfig& other);
72
  ///
73
  /// \brief Construct a new AnalysisConfig from a no-combined model.
74 75 76
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
77
  explicit AnalysisConfig(const std::string& model_dir);
78
  ///
79
  /// \brief Construct a new AnalysisConfig from a combined model.
80 81 82 83
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
84 85
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
86 87 88
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
89
  enum class Precision {
90 91 92
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
N
nhzlx 已提交
93
  };
94

95 96 97 98 99
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
100
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
101 102 103 104 105 106 107 108

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
109 110
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
111 112 113 114 115
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
116
  void SetProgFile(const std::string& x) { prog_file_ = x; }
117 118 119 120 121
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
122
  void SetParamsFile(const std::string& x) { params_file_ = x; }
123 124 125 126 127 128

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
129 130 131
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
132 133 134 135 136
  ///
  /// \brief Get the model directory path.
  ///
  /// \return const std::string& The model directory path.
  ///
137
  const std::string& model_dir() const { return model_dir_; }
138 139 140 141 142
  ///
  /// \brief Get the program file path.
  ///
  /// \return const std::string& The program file path.
  ///
143
  const std::string& prog_file() const { return prog_file_; }
144 145 146 147 148
  ///
  /// \brief Get the combined parameters file.
  ///
  /// \return const std::string& The combined parameters file.
  ///
149 150
  const std::string& params_file() const { return params_file_; }

151
  // Padding related.
152 153 154 155 156

  ///
  /// \brief Turn off FC Padding.
  ///
  ///
157
  void DisableFCPadding();
158 159 160 161 162
  ///
  /// \brief A boolean state telling whether fc padding is used.
  ///
  /// \return bool Whether fc padding is used.
  ///
163 164
  bool use_fc_padding() const { return use_fc_padding_; }

165
  // GPU related.
166

167 168 169 170 171 172
  ///
  /// \brief Turn on GPU.
  ///
  /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
  /// \param device_id device_id the GPU card to use (default is 0).
  ///
173
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
174 175 176 177
  ///
  /// \brief Turn off GPU.
  ///
  ///
178
  void DisableGpu();
179

W
Wilber 已提交
180 181 182 183
  void EnableXpu(int l3_workspace_size = 0xfffc00, bool locked = false,
                 bool autotune = true, const std::string& autotune_file = "",
                 const std::string& precision = "int16",
                 bool adaptive_seqlen = false);
184 185 186 187 188
  ///
  /// \brief A boolean state telling whether the GPU is turned on.
  ///
  /// \return bool Whether the GPU is turned on.
  ///
189
  bool use_gpu() const { return use_gpu_; }
190
  ///
191 192 193 194 195 196 197 198 199 200 201 202
  /// \brief A boolean state telling whether the XPU is turned on.
  ///
  /// \return bool Whether the XPU is turned on.
  ///
  bool use_xpu() const { return use_xpu_; }
  ///
  /// \brief Get the GPU device id.
  ///
  /// \return int The GPU device id.
  ///
  int gpu_device_id() const { return gpu_device_id_; }
  ///
203
  /// \brief Get the XPU device id.
204
  ///
205
  /// \return int The XPU device id.
206
  ///
207
  int xpu_device_id() const { return xpu_device_id_; }
208 209 210 211 212
  ///
  /// \brief Get the initial size in MB of the GPU memory pool.
  ///
  /// \return int The initial size in MB of the GPU memory pool.
  ///
213
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
214 215 216 217 218 219
  ///
  /// \brief Get the proportion of the initial memory pool size compared to the
  /// device.
  ///
  /// \return float The proportion of the initial memory pool size.
  ///
220
  float fraction_of_gpu_memory_for_pool() const;
221

222 223 224 225 226
  // CUDNN related.
  ///
  /// \brief Turn on CUDNN.
  ///
  ///
227
  void EnableCUDNN();
228 229 230 231 232
  ///
  /// \brief A boolean state telling whether to use CUDNN.
  ///
  /// \return bool Whether to use CUDNN.
  ///
233 234
  bool cudnn_enabled() const { return use_cudnn_; }

235 236 237 238 239 240
  ///
  /// \brief Control whether to perform IR graph optimization.
  /// If turned off, the AnalysisConfig will act just like a NativeConfig.
  ///
  /// \param x Whether the ir graph optimization is actived.
  ///
241
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
242 243 244 245 246 247
  ///
  /// \brief A boolean state telling whether the ir graph optimization is
  /// actived.
  ///
  /// \return bool Whether to use ir graph optimization.
  ///
248
  bool ir_optim() const { return enable_ir_optim_; }
249

250 251 252 253 254 255 256
  ///
  /// \brief INTERNAL Determine whether to use the feed and fetch operators.
  /// Just for internal development, not stable yet.
  /// When ZeroCopyTensor is used, this should be turned off.
  ///
  /// \param x Whether to use the feed and fetch operators.
  ///
257
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
258 259 260 261 262 263
  ///
  /// \brief A boolean state telling whether to use the feed and fetch
  /// operators.
  ///
  /// \return bool Whether to use the feed and fetch operators.
  ///
264
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
265

266 267 268 269 270 271 272 273 274 275 276
  ///
  /// \brief Control whether to specify the inputs' names.
  /// The ZeroCopyTensor type has a name member, assign it with the
  /// corresponding
  /// variable name. This is used only when the input ZeroCopyTensors passed to
  /// the
  /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
  /// phase.
  ///
  /// \param x Whether to specify the inputs' names.
  ///
277
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
278 279 280 281 282 283 284
  ///
  /// \brief A boolean state tell whether the input ZeroCopyTensor names
  /// specified should
  /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
  ///
  /// \return bool Whether to specify the inputs' names.
  ///
285
  bool specify_input_name() const { return specify_input_name_; }
286

287 288 289 290 291 292 293 294 295 296
  ///
  /// \brief Turn on the TensorRT engine.
  /// The TensorRT engine will accelerate some subgraphes in the original Fluid
  /// computation graph. In some models such as resnet50, GoogleNet and so on,
  /// it gains significant performance acceleration.
  ///
  /// \param workspace_size The memory size(in byte) used for TensorRT
  /// workspace.
  /// \param max_batch_size The maximum batch size of this prediction task,
  /// better set as small as possible for less performance loss.
297
  /// \param min_subgraph_size The minimum TensorRT subgraph size needed, if a
298 299 300 301 302 303 304 305
  /// subgraph is smaller than this, it will not be transferred to TensorRT
  /// engine.
  /// \param precision The precision used in TensorRT.
  /// \param use_static Serialize optimization information to disk for reusing.
  /// \param use_calib_mode Use TRT int8 calibration(post training
  /// quantization).
  ///
  ///
306 307 308 309 310
  void EnableTensorRtEngine(int workspace_size = 1 << 20,
                            int max_batch_size = 1, int min_subgraph_size = 3,
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
311 312 313 314 315
  ///
  /// \brief A boolean state telling whether the TensorRT engine is used.
  ///
  /// \return bool Whether the TensorRT engine is used.
  ///
316
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
317 318 319 320 321 322 323 324
  ///
  /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
  /// \param min_input_shape The min input shape of the subgraph input.
  /// \param max_input_shape The max input shape of the subgraph input.
  /// \param opt_input_shape The opt input shape of the subgraph input.
  /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
  /// TRT plugin will not run fp16.
  ///
325 326 327 328 329
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
330

331 332 333 334 335 336
  ///
  /// \brief Prevent ops running in Paddle-TRT
  /// NOTE: just experimental, not an official stable API, easy to be broken.
  ///
  void Exp_DisableTensorRtOPs(const std::vector<std::string>& ops);

337 338
  ///
  /// \brief Replace some TensorRT plugins to TensorRT OSS(
339 340 341
  /// https://github.com/NVIDIA/TensorRT), with which some models's inference
  /// may be more high-performance. Libnvinfer_plugin.so greater than
  /// V7.2.1 is needed.
342 343
  ///
  void EnableTensorRtOSS();
344

345 346 347 348 349 350 351
  ///
  /// \brief A boolean state telling whether to use the TensorRT OSS.
  ///
  /// \return bool Whether to use the TensorRT OSS.
  ///
  bool tensorrt_oss_enabled() { return trt_use_oss_; }

352 353 354 355 356 357 358 359 360 361 362 363 364 365
  ///
  /// \brief Enable TensorRT DLA
  /// \param dla_core ID of DLACore, which should be 0, 1,
  ///        ..., IBuilder.getNbDLACores() - 1
  ///
  void EnableTensorRtDLA(int dla_core = 0);

  ///
  /// \brief A boolean state telling whether to use the TensorRT DLA.
  ///
  /// \return bool Whether to use the TensorRT DLA.
  ///
  bool tensorrt_dla_enabled() { return trt_use_dla_; }

D
denglin-github 已提交
366 367 368
  void EnableDlnne(int min_subgraph_size = 3);
  bool dlnne_enabled() const { return use_dlnne_; }

369 370 371 372 373 374 375
  ///
  /// \brief Turn on the usage of Lite sub-graph engine.
  ///
  /// \param precision_mode Precion used in Lite sub-graph engine.
  /// \param passes_filter Set the passes used in Lite sub-graph engine.
  /// \param ops_filter Operators not supported by Lite.
  ///
石晓伟 已提交
376 377
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
378
      bool zero_copy = false,
石晓伟 已提交
379 380 381
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

382 383 384 385 386 387
  ///
  /// \brief A boolean state indicating whether the Lite sub-graph engine is
  /// used.
  ///
  /// \return bool whether the Lite sub-graph engine is used.
  ///
石晓伟 已提交
388 389
  bool lite_engine_enabled() const { return use_lite_; }

390 391 392 393 394 395 396
  ///
  /// \brief Control whether to debug IR graph analysis phase.
  /// This will generate DOT files for visualizing the computation graph after
  /// each analysis pass applied.
  ///
  /// \param x whether to debug IR graph analysis phase.
  ///
Y
Yan Chunwei 已提交
397
  void SwitchIrDebug(int x = true);
398

399 400 401 402
  ///
  /// \brief Turn on MKLDNN.
  ///
  ///
L
luotao1 已提交
403
  void EnableMKLDNN();
404 405 406
  ///
  /// \brief Set the cache capacity of different input shapes for MKLDNN.
  /// Default value 0 means not caching any shape.
407 408
  /// Please see MKL-DNN Data Caching Design Document:
  /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
409 410 411
  ///
  /// \param capacity The cache capacity.
  ///
412
  void SetMkldnnCacheCapacity(int capacity);
413 414 415 416 417
  ///
  /// \brief A boolean state telling whether to use the MKLDNN.
  ///
  /// \return bool Whether to use the MKLDNN.
  ///
418 419
  bool mkldnn_enabled() const { return use_mkldnn_; }

420 421 422 423 424 425
  ///
  /// \brief Set the number of cpu math library threads.
  ///
  /// \param cpu_math_library_num_threads The number of cpu math library
  /// threads.
  ///
426
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
427 428 429 430 431 432
  ///
  /// \brief An int state telling how many threads are used in the CPU math
  /// library.
  ///
  /// \return int The number of threads used in the CPU math library.
  ///
433 434 435 436
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

437 438 439 440 441
  ///
  /// \brief Transform the AnalysisConfig to NativeConfig.
  ///
  /// \return NativeConfig The NativeConfig transformed.
  ///
Y
Yan Chunwei 已提交
442
  NativeConfig ToNativeConfig() const;
443 444 445 446 447
  ///
  /// \brief Specify the operator type list to use MKLDNN acceleration.
  ///
  /// \param op_list The operator type list.
  ///
448 449 450
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
451

452 453 454 455
  ///
  /// \brief Turn on MKLDNN quantization.
  ///
  ///
456 457
  void EnableMkldnnQuantizer();

458 459 460 461 462 463 464 465 466 467 468 469 470
  ///
  /// \brief Turn on MKLDNN bfloat16.
  ///
  ///
  void EnableMkldnnBfloat16();

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Bfloat16.
  ///
  /// \return bool Whether to use the MKLDNN Bfloat16.
  ///
  bool mkldnn_bfloat16_enabled() const { return use_mkldnn_bfloat16_; }

471 472 473 474 475 476 477 478
  /// \brief Specify the operator type list to use Bfloat16 acceleration.
  ///
  /// \param op_list The operator type list.
  ///
  void SetBfloat16Op(std::unordered_set<std::string> op_list) {
    bfloat16_enabled_op_types_ = op_list;
  }

479 480 481 482 483 484 485 486
  ///
  /// \brief A boolean state telling whether the thread local CUDA stream is
  /// enabled.
  ///
  /// \return bool Whether the thread local CUDA stream is enabled.
  ///
  bool thread_local_stream_enabled() const { return thread_local_stream_; }

487 488 489 490 491
  ///
  /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
  ///
  /// \return bool Whether the MKLDNN quantization is enabled.
  ///
492 493
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

494 495 496 497 498
  ///
  /// \brief Get MKLDNN quantizer config.
  ///
  /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
  ///
499
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
500

501 502 503 504 505 506 507 508 509
  ///
  /// \brief Specify the memory buffer of program and parameter.
  /// Used when model and params are loaded directly from memory.
  ///
  /// \param prog_buffer The memory buffer of program.
  /// \param prog_buffer_size The size of the model data.
  /// \param params_buffer The memory buffer of the combined parameters file.
  /// \param params_buffer_size The size of the combined parameters data.
  ///
T
Tao Luo 已提交
510
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
511
                      const char* params_buffer, size_t params_buffer_size);
512 513 514 515 516 517
  ///
  /// \brief A boolean state telling whether the model is set from the CPU
  /// memory.
  ///
  /// \return bool Whether model and params are loaded directly from memory.
  ///
T
Tao Luo 已提交
518
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
519

520 521 522 523
  ///
  /// \brief Turn on memory optimize
  /// NOTE still in development.
  ///
524
  void EnableMemoryOptim();
525 526 527 528 529 530
  ///
  /// \brief A boolean state telling whether the memory optimization is
  /// activated.
  ///
  /// \return bool Whether the memory optimization is activated.
  ///
Y
Yan Chunwei 已提交
531
  bool enable_memory_optim() const;
532

533 534 535 536
  ///
  /// \brief Turn on profiling report.
  /// If not turned on, no profiling report will be generated.
  ///
537
  void EnableProfile();
538 539 540 541 542
  ///
  /// \brief A boolean state telling whether the profiler is activated.
  ///
  /// \return bool Whether the profiler is activated.
  ///
543 544
  bool profile_enabled() const { return with_profile_; }

545 546 547
  ///
  /// \brief Mute all logs in Paddle inference.
  ///
548
  void DisableGlogInfo();
549 550 551 552 553
  ///
  /// \brief A boolean state telling whether logs in Paddle inference are muted.
  ///
  /// \return bool Whether logs in Paddle inference are muted.
  ///
554 555
  bool glog_info_disabled() const { return !with_glog_info_; }

556 557 558 559 560
  ///
  /// \brief Set the AnalysisConfig to be invalid.
  /// This is to ensure that an AnalysisConfig can only be used in one
  /// AnalysisPredictor.
  ///
561
  void SetInValid() const { is_valid_ = false; }
562 563 564 565 566
  ///
  /// \brief A boolean state telling whether the AnalysisConfig is valid.
  ///
  /// \return bool Whether the AnalysisConfig is valid.
  ///
567
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
568

569 570
  friend class ::paddle::AnalysisPredictor;

571 572 573 574 575
  ///
  /// \brief Get a pass builder for customize the passes in IR analysis phase.
  /// NOTE: Just for developer, not an official API, easy to be broken.
  ///
  ///
576
  PassStrategy* pass_builder() const;
577 578 579 580 581 582 583

  ///
  /// \brief Enable the GPU multi-computing stream feature.
  /// NOTE: The current behavior of this interface is to bind the computation
  /// stream to the thread, and this behavior may be changed in the future.
  ///
  void EnableGpuMultiStream();
584
  void PartiallyRelease();
585 586 587 588 589 590 591

 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

592
 protected:
593 594
  // Model pathes.
  std::string model_dir_;
595 596
  mutable std::string prog_file_;
  mutable std::string params_file_;
597

S
Sylwester Fraczek 已提交
598
  // GPU related.
599
  bool use_gpu_{false};
600 601
  int gpu_device_id_{0};
  int xpu_device_id_{0};
602 603
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.

604 605
  bool use_cudnn_{false};

606 607 608
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
609
  // TensorRT related.
610
  bool use_tensorrt_{false};
611 612
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
613
  int tensorrt_workspace_size_{1 << 30};
614 615 616 617
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
618
  int tensorrt_max_batchsize_{1};
619 620 621 622 623
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
624 625 626
  Precision tensorrt_precision_mode_{Precision::kFloat32};
  bool trt_use_static_engine_{false};
  bool trt_use_calib_mode_{true};
627
  bool trt_use_oss_{false};
628 629
  bool trt_use_dla_{false};
  int trt_dla_core_{0};
630 631 632
  std::map<std::string, std::vector<int>> min_input_shape_{};
  std::map<std::string, std::vector<int>> max_input_shape_{};
  std::map<std::string, std::vector<int>> optim_input_shape_{};
633
  std::vector<std::string> trt_disabled_ops_{};
634
  bool disable_trt_plugin_fp16_{false};
635

D
denglin-github 已提交
636 637 638 639
  // dlnne related.
  bool use_dlnne_{false};
  int dlnne_min_subgraph_size_{3};

Y
Yan Chunwei 已提交
640 641 642
  // memory reuse related.
  bool enable_memory_optim_{false};

643 644 645
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
646
  bool model_from_memory_{false};
647

648 649 650 651 652 653 654 655
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

656 657
  bool with_profile_{false};

658 659
  bool with_glog_info_{true};

660 661 662 663
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
664

石晓伟 已提交
665 666 667 668
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;
669
  bool lite_zero_copy_;
石晓伟 已提交
670

671
  bool thread_local_stream_{false};
672 673
  bool use_xpu_{false};
  int xpu_l3_workspace_size_;
W
Wilber 已提交
674 675 676 677 678
  bool xpu_locked_;
  bool xpu_autotune_;
  std::string xpu_autotune_file_;
  std::string xpu_precision_;
  bool xpu_adaptive_seqlen_;
679

680
  // mkldnn related.
W
Wilber 已提交
681
  int mkldnn_cache_capacity_{10};
682 683
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
684
  bool use_mkldnn_bfloat16_{false};
685
  std::unordered_set<std::string> bfloat16_enabled_op_types_;
686

687 688 689 690
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
691 692
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
693 694 695
};

}  // namespace paddle