test.py 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
from paddle.distributed import fleet
from paddle.vision.models import ResNet
from paddle.vision.models.resnet import BottleneckBlock
20
from paddle.io import DataLoader, Dataset
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

base_lr = 0.1
momentum_rate = 0.9
l2_decay = 1e-4

epoch = 3
batch_num = 1
batch_size = 1
class_dim = 102


# define a random dataset
class RandomDataset(Dataset):

    def __init__(self, num_samples):
        self.num_samples = num_samples

    def __getitem__(self, idx):
        image = np.random.random([3, 224, 224]).astype('float32')
        label = np.random.randint(0, class_dim - 1, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.num_samples


def optimizer_setting(parameter_list=None):
    optimizer = paddle.optimizer.Momentum(
        learning_rate=base_lr,
        momentum=momentum_rate,
        weight_decay=paddle.regularizer.L2Decay(l2_decay),
        parameters=parameter_list)
    return optimizer


def train_resnet():
    fleet.init(is_collective=True)

    resnet = ResNet(BottleneckBlock, 18, num_classes=class_dim)
    optimizer = optimizer_setting(parameter_list=resnet.parameters())
    optimizer = fleet.distributed_optimizer(optimizer)
    resnet = fleet.distributed_model(resnet)

    dataset = RandomDataset(batch_num * batch_size)
    train_loader = DataLoader(dataset,
                              batch_size=batch_size,
                              shuffle=True,
                              drop_last=True,
                              num_workers=2)

    print("Distributed training start...")
    for eop in range(epoch):
        resnet.train()

        for batch_id, data in enumerate(train_loader()):
            img, label = data
            label.stop_gradient = True

            out = resnet(img)
            loss = paddle.nn.functional.cross_entropy(input=out, label=label)
            avg_loss = paddle.mean(x=loss)
            acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
            acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)

            avg_loss.backward()
            optimizer.step()
            resnet.clear_gradients()

            print("[Epoch %d, batch %d] loss: %.5f, acc1: %.5f, acc5: %.5f" %
                  (eop, batch_id, avg_loss, acc_top1, acc_top5))

    print("Distributed training completed")


if __name__ == '__main__':
    import os
    nnodes = os.getenv('PADDLE_NNODES')
    cn = os.getenv('PADDLE_LOCAL_SIZE')
    print(f"Prepare distributed training with {nnodes} nodes {cn} cards")
    train_resnet()