ascend_parser.py 92.4 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid.core as core
import numpy as np
16 17
from functools import reduce

18 19
__all__ = []

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
registerd_op = {  ## forwards
    "elementwise_add": "AddParser",
    "matmul": "MatMulParser",
    "mul": "MulParser",
    "relu": "ReluParser",
    "softmax_with_cross_entropy": "SoftmaxWithCrossEntropyParser",
    "shape": "ShapeParser",
    "fill_constant": "FillConstantParser",
    "reduce_sum": "ReduceSumParser",
    "elementwise_mul": "DotMulParser",
    "elementwise_div": "DotDivParser",
    "elementwise_pow": "DotPowParser",
    "elementwise_max": "MaxParser",
    "elementwise_min": "MinParser",
    "elementwise_sub": "DotSubParser",
    "pow": "PowParser",
    "gelu": "GeluParser",
    "sqrt": "SqrtParser",
    "log": "LogParser",
    "sum": "SumParser",
    "logical_not": "LogicalNotParser",
    "gather": "GatherParser",
    "scatter": "ScatterParser",
    "cast": "CastParser",
    "tanh": "TanhParser",
    "stack": "StackParser",
    "square": "SquareParser",
    "unsqueeze2": "UnSqueezeParser",
    "assign": "AssignParser",
    "softmax": "SoftMaxParser",
    "reshape2": "ReshapeParser",
    "transpose2": "TransposeParser",
    "layer_norm": "LayerNormParser",
    "less_than": "LessParser",
    "mean": "MeanParser",
    "scale": "ScaleParser",
    "slice": "SliceParser",
    "top_k": "TopkParser",
    "accuracy": "AccuracyParser",
    #"increment": "IncrementParser",
    "lookup_table": "LookupTableParser",
    "truncated_gaussian_random": "TruncatedNormalParser",
    "c_allgather": "AllGatherParser",
    "c_allreduce_sum": "AllReduceSumParser",
    "c_allreduce_max": "AllReduceMaxParser",
    "c_broadcast": "BroadcastParser",
    "c_reduce_scatter": "ReduceScatterParser",
    "c_send": "SendParser",
    "c_receive": "ReceiveParser",
    "uniform_random": "UniformRandomParser",
    "range": "RangeParser",
    "equal": "EqualParser",
    "expand": "ExpandParser",
    "squeeze2": "SqueezeParser",

    ## backwords
    "matmul_grad": "MatMulGradParser",
    "mul_grad": "MulGradParser",
    "relu_grad": "ReluGradParser",
    "reduce_sum_grad": "ReduceSumGradParser",
    "softmax_with_cross_entropy_grad": "SoftmaxWithCrossEntropyGradParser",
    "tanh_grad": "TanhGradParser",
    "log_grad": "LogGradParser",
    "pow_grad": "PowGradParser",
    "sqrt_grad": "SqrtGradParser",
    "gelu_grad": "GeluGradParser",
    "mean_grad": "MeanGradParser",
    'lookup_table_grad': "LookUpTableGradParser",
    "elementwise_mul_grad": "DotMulGradParser",
    "elementwise_add_grad": "DotAddGradParser",
    "elementwise_div_grad": "DotDivGradParser",
    "softmax_grad": "SoftmaxGradParser",
    "slice_grad": "SliceGradParser",
    "reshape2_grad": "ReshapeGradParser",
    "gather_grad": "GatherGradParser",
    "transpose2_grad": "TransposeGradParser",
    "layer_norm_grad": "LayerNormGradParser",

    ## opt
    "sgd": "SGDParser",
    #"adam": "AdamParser",
}
102 103 104 105 106
global_cnt = -1
global_input_cnt = -1


class AscendHelper(object):
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    def __init__(self):
        self.dtype2ge_map = {
            0: core.GEDataType.DT_BOOL,
            1: core.GEDataType.DT_INT16,
            2: core.GEDataType.DT_INT32,
            3: core.GEDataType.DT_INT64,
            4: core.GEDataType.DT_FLOAT16,
            5: core.GEDataType.DT_FLOAT,
            6: core.GEDataType.DT_DOUBLE
        }
        self.dtype2np_map = {
            0: "bool",
            1: "int16",
            2: "int32",
            3: "int64",
            4: "float16",
            5: "float32",
            6: "float64"
        }
127
        self.dtype2paddle_inv_map = {"VarType.FP32": 0, "VarType.FP16": 1}
128 129 130 131 132 133 134 135

    def dtype2ge(self, dtype):
        assert dtype in self.dtype2ge_map, "dtype[%d] is not supported %d" % (
            dtype)
        return self.dtype2ge_map[dtype]

    def dtype2np(self, index):
        assert index in self.dtype2np_map, "index[%d] is not supported %d" % (
J
Jiangxinz 已提交
136
            index)
137 138 139 140
        return self.dtype2np_map[index]


class AscendParserFactory(object):
141

142 143 144 145 146 147 148 149 150 151 152 153 154
    def __init__(self, graph, var2geop):
        self.graph = graph
        self.var2geop = var2geop

    def create_parse(self, parser_class):
        try:
            parser = globals()[parser_class](self.graph, self.var2geop)
            return parser
        except:
            raise ValueError("parser class %s does not exist" % parser_class)


class AscendParserBase(object):
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, graph, var2geop):
        self.graph = graph
        self.var2geop = var2geop
        self.op = None
        self.ascend_helper = AscendHelper()

    def _get_ge_input(self, input_var_name):
        assert input_var_name in self.var2geop, "var %s not created before" % (
            input_var_name)
        return self.var2geop[input_var_name]

    def update_output(self, geop_list, index_list):
        output_num = len(self.op.output_names)
        assert output_num == len(
            index_list
        ), "Parser[%s]'s output number[%d] is not equal to parameters number[%d]" % (
            self.parser_name, len(index_list), output_num)
        for output_id in range(output_num):
            arguments = self.op.output(self.op.output_names[output_id])
            if len(arguments) > 0:
                assert len(arguments) == len(
                    index_list[output_id]
                ), "Parser[%s]'s %dth argument number[%d] is not equal to paddle's number[%d]" % (
179 180
                    self.parser_name, output_id, len(
                        index_list[output_id]), len(arguments))
181
                for i in range(len(arguments)):
182 183
                    self.var2geop[arguments[i]] = geop_list[
                        index_list[output_id][i]]
184 185 186 187 188 189 190 191

        for geop in geop_list:
            self.graph.add_op(geop)

    def apply(self, op):
        self.op = op
        assert self.op.type == self.parser_name, "op [%s] != parser_name[%s]" % (
            self.op.type, self.parser_name)
192
        #print("begin to parse op %s" % (self.parser_name))
193 194 195 196 197 198 199 200 201 202 203
        geop_list, index_list = self._apply()
        self.update_output(geop_list, index_list)

    def _mark_as_input(self, ge_tensor):
        global global_input_cnt
        global_input_cnt += 1
        self.var2geop["geinput." + str(global_input_cnt)] = ge_tensor

    def _accumulated_op_id(self):
        global global_cnt
        global_cnt += 1
204 205
        name = "." + str(global_cnt)
        return name
206 207

    def _create_ge_tensor(self, shape, dtype, value):
208 209 210
        tensor_desc = core.GETensorDesc(core.GEShape(shape),
                                        core.GEFormat.FORMAT_ND,
                                        self.ascend_helper.dtype2ge(dtype))
211 212
        tensor = core.GETensor(tensor_desc)

213 214
        data = (value * np.ones(
            (shape))).reshape(shape).astype(self.ascend_helper.dtype2np(dtype))
215 216 217 218 219
        buf = data.tobytes()
        data_8 = np.frombuffer(buf, dtype=np.uint8)
        tensor.set_data(data_8)
        return tensor

220
    def _get_ge_tensor(self, shape, dtype, value_list):
221 222 223
        tensor_desc = core.GETensorDesc(core.GEShape(shape),
                                        core.GEFormat.FORMAT_ND,
                                        self.ascend_helper.dtype2ge(dtype))
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        tensor = core.GETensor(tensor_desc)

        data = np.array(value_list).reshape(shape).astype(
            self.ascend_helper.dtype2np(dtype))
        buf = data.tobytes()
        data_8 = np.frombuffer(buf, dtype=np.uint8)
        tensor.set_data(data_8)

        tensor_const = core.GEOperatorFactory.create_operator(
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor)

        return tensor_const

    def _get_variable(self, shape, dtype, tensor):
        if dtype == "int32":
            type = core.GEDataType.DT_INT32
        elif dtype == "float32":
            type = core.GEDataType.DT_FLOAT

        var = core.GEOperatorFactory.create_operator(
            "variable" + self._accumulated_op_id(), "Variable")
246 247 248 249
        var.update_output_desc(
            "y",
            core.GETensorDesc(core.GEShape(shape), core.GEFormat.FORMAT_ND,
                              type))
250
        assign = core.GEOperatorFactory.create_operator(
251 252
            "assign" + self._accumulated_op_id(),
            "Assign").set_input("value", tensor).set_input("ref", var)
253 254 255 256

        return assign

    def _create_shape_tensor(self):
257 258 259
        tensor_desc = core.GETensorDesc(core.GEShape([2]),
                                        core.GEFormat.FORMAT_ND,
                                        core.GEDataType.DT_INT32)
260 261 262 263 264 265 266 267 268 269 270
        tensor = core.GETensor(tensor_desc)

        data = np.ones((2)).astype("int32").reshape([2])
        data[0] = 64
        buf = data.tobytes()
        data_8 = np.frombuffer(buf, dtype=np.uint8)
        tensor.set_data(data_8)
        return tensor

    def _get_GEtensor_shape(self, tensor):
        tensor_shape = core.GEOperatorFactory.create_operator(
271 272
            "shape" + self._accumulated_op_id(),
            "Shape").set_input("x", tensor)
273
        tensor_shape = core.GEOperatorFactory.create_operator(
274 275
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", tensor_shape).set_attr_int32("dst_type", 0)
276 277
        return tensor_shape

278 279

class AddParser(AscendParserBase):
280

281 282 283 284 285 286 287 288
    def __init__(self, graph, var2geop):
        super(AddParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_add"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        y = self._get_ge_input(self.op.input_arg_names[1])
        add = core.GEOperatorFactory.create_operator(
289 290
            "add" + self._accumulated_op_id(),
            "Add").set_input("x1", x).set_input("x2", y)
291 292 293
        return [add], [[0]]


294
class DotSubParser(AscendParserBase):
295

296
    def __init__(self, graph, var2geop):
297 298
        super(DotSubParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_sub"
299 300 301

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
302 303 304 305 306
        y = self._get_ge_input(self.op.input_arg_names[1])
        sub = core.GEOperatorFactory.create_operator(
            "sub" + self._accumulated_op_id(),
            "Sub").set_input("x1", x).set_input("x2", y)
        return [sub], [[0]]
307 308


309
class DotMulParser(AscendParserBase):
310

311
    def __init__(self, graph, var2geop):
312 313
        super(DotMulParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_mul"
314 315 316

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
317 318 319 320 321
        y = self._get_ge_input(self.op.input_arg_names[1])
        mul = core.GEOperatorFactory.create_operator(
            "dotmul" + self._accumulated_op_id(),
            "Mul").set_input("x1", x).set_input("x2", y)
        return [mul], [[0]]
322 323


324
class DotDivParser(AscendParserBase):
325

326 327 328 329 330 331 332 333 334 335 336
    def __init__(self, graph, var2geop):
        super(DotDivParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_div"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        y = self._get_ge_input(self.op.input_arg_names[1])
        div = core.GEOperatorFactory.create_operator(
            "dotdiv" + self._accumulated_op_id(),
            "Div").set_input("x1", x).set_input("x2", y)
        return [div], [[0]]
337 338


339
class DotPowParser(AscendParserBase):
340

341
    def __init__(self, graph, var2geop):
342 343
        super(DotPowParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_pow"
344 345

    def _apply(self):
346 347 348 349
        x = self._get_ge_input(self.op.input_arg_names[0])
        y = self._get_ge_input(self.op.input_arg_names[1])
        pow = core.GEOperatorFactory.create_operator(
            "dotpow" + self._accumulated_op_id(),
J
Jiangxinz 已提交
350
            "Pow").set_input("x1", x).set_input("x2", y)
351
        return [pow], [[0]]
352 353


354
class LessParser(AscendParserBase):
355

356
    def __init__(self, graph, var2geop):
357 358
        super(LessParser, self).__init__(graph, var2geop)
        self.parser_name = "less_than"
359 360

    def _apply(self):
361 362 363 364 365 366
        x = self._get_ge_input(self.op.input_arg_names[0])
        y = self._get_ge_input(self.op.input_arg_names[1])
        less_than = core.GEOperatorFactory.create_operator(
            "less_than" + self._accumulated_op_id(),
            "Less").set_input("x1", x).set_input("x2", y)
        return [less_than], [[0]]
367 368


369
class MaxParser(AscendParserBase):
370

371 372 373
    def __init__(self, graph, var2geop):
        super(MaxParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_max"
374

375 376 377 378 379 380 381 382 383 384
    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        y = self._get_ge_input(self.op.input_arg_names[1])
        max_out = core.GEOperatorFactory.create_operator(
            "max" + self._accumulated_op_id(),
            "Maximum").set_input("x1", x).set_input("x2", y)
        return [max_out], [[0]]


class MinParser(AscendParserBase):
385

386
    def __init__(self, graph, var2geop):
387 388
        super(MinParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_min"
389 390

    def _apply(self):
391 392 393 394 395 396
        x = self._get_ge_input(self.op.input_arg_names[0])
        y = self._get_ge_input(self.op.input_arg_names[1])
        min_out = core.GEOperatorFactory.create_operator(
            "min" + self._accumulated_op_id(),
            "Minimum").set_input("x1", x).set_input("x2", y)
        return [min_out], [[0]]
397 398


399 400
## cal
class LogParser(AscendParserBase):
401

402 403 404 405 406 407 408 409 410 411 412 413
    def __init__(self, graph, var2geop):
        super(LogParser, self).__init__(graph, var2geop)
        self.parser_name = "log"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        log = core.GEOperatorFactory.create_operator(
            "log" + self._accumulated_op_id(), "Log").set_input("x", x)
        return [log], [[0]]


class SqrtParser(AscendParserBase):
414

415 416 417 418 419 420 421 422 423 424 425 426
    def __init__(self, graph, var2geop):
        super(SqrtParser, self).__init__(graph, var2geop)
        self.parser_name = "sqrt"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        sqrt = core.GEOperatorFactory.create_operator(
            "sqrt" + self._accumulated_op_id(), "Sqrt").set_input("x", x)
        return [sqrt], [[0]]


class PowParser(AscendParserBase):
427

428 429 430 431 432 433 434 435 436 437
    def __init__(self, graph, var2geop):
        super(PowParser, self).__init__(graph, var2geop)
        self.parser_name = "pow"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        factor = self.op.attr("factor")
        pow_value = core.GEOperatorFactory.create_operator(
            "pow" + self._accumulated_op_id(),
            "Power").set_input("x", x).set_attr_float(
438 439 440
                "power",
                factor).set_attr_float("scale",
                                       1.0).set_attr_float("shift", 0.0)
441 442 443 444
        return [pow_value], [[0]]


class SquareParser(AscendParserBase):
445

446 447 448 449 450 451 452 453 454 455 456 457
    def __init__(self, graph, var2geop):
        super(SquareParser, self).__init__(graph, var2geop)
        self.parser_name = "square"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        square = core.GEOperatorFactory.create_operator(
            "square" + self._accumulated_op_id(), "Square").set_input("x", x)
        return [square], [[0]]


class SumParser(AscendParserBase):
458

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
    def __init__(self, graph, var2geop):
        super(SumParser, self).__init__(graph, var2geop)
        self.parser_name = "sum"

    def _apply(self):
        len_list = len(self.op.input_arg_names)
        if len_list < 2:
            assert False, "the size of input list must large or equal 2"
        x = self._get_ge_input(self.op.input_arg_names[0])
        y = self._get_ge_input(self.op.input_arg_names[1])
        sum = core.GEOperatorFactory.create_operator(
            "sum" + self._accumulated_op_id(),
            "Add").set_input("x1", x).set_input("x2", y)
        for i in range(2, len_list):
            y = self._get_ge_input(self.op.input_arg_names[i])
            sum = core.GEOperatorFactory.create_operator(
                "sum" + self._accumulated_op_id(),
                "Add").set_input("x1", sum).set_input("x2", y)
        return [sum], [[0]]


class LogicalNotParser(AscendParserBase):
481

482 483 484 485 486 487 488 489 490 491 492 493 494
    def __init__(self, graph, var2geop):
        super(LogicalNotParser, self).__init__(graph, var2geop)
        self.parser_name = "logical_not"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        logical_not = core.GEOperatorFactory.create_operator(
            "logical_not" + self._accumulated_op_id(),
            "LogicalNot").set_input("x", x)
        return [logical_not], [[0]]


class MeanParser(AscendParserBase):
495

496 497 498 499 500 501 502
    def __init__(self, graph, var2geop):
        super(MeanParser, self).__init__(graph, var2geop)
        self.parser_name = "mean"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        mean = core.GEOperatorFactory.create_operator(
503 504 505
            "mean" + self._accumulated_op_id(), "ReduceMeanD").set_input(
                "x", x).set_attr_bool("keep_dims",
                                      False).set_attr_vec_int32("axes", [])
506 507 508 509
        return [mean], [[0]]


class ReduceSumParser(AscendParserBase):
510

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    def __init__(self, graph, var2geop):
        super(ReduceSumParser, self).__init__(graph, var2geop)
        self.parser_name = "reduce_sum"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        axes = self.op.attr("dim")
        keep_dims = self.op.attr("keep_dim")
        reduce_all = self.op.attr("reduce_all")
        x_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        if reduce_all:
            axes = list(range(len(x_shape)))
        reduce_sum = core.GEOperatorFactory.create_operator(
            "reduce_sum" + self._accumulated_op_id(),
            "ReduceSumD").set_input("x", x, 0).set_attr_vec_int32(
                "axes", axes).set_attr_bool("keep_dims", keep_dims)
        return [reduce_sum], [[0]]


#class IncrementParser(AscendParserBase):
#    def __init__(self, graph, var2geop):
#        super(IncrementParser, self).__init__(graph, var2geop)
#        self.parser_name = "increment"
#
535
#    def _apply(self):
536 537 538
#        x = self._get_ge_input(self.op.input_arg_names[0])
#        step = self.op.attr("step") #self._get_ge_input(self.op.input_arg_names[1])
#        print("step: ", step)
539
#
540
#        increment = core.GEOperatorFactory.create_operator("adds" + self._accumulated_op_id(), "Adds").set_input("x", x).set_attr_float("value", step) #set_input("x2", bias)
541
#
542 543 544 545 546
#        return [increment]


## matrix cal
class MatMulParser(AscendParserBase):
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    def __init__(self, graph, var2geop):
        super(MatMulParser, self).__init__(graph, var2geop)
        self.parser_name = "matmul"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        y = self._get_ge_input(self.op.input_arg_names[1])
        transpose_x = self.op.attr("transpose_X")
        transpose_y = self.op.attr("transpose_Y")

        x1_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        x2_shape = self.op.block.var(self.op.input_arg_names[1]).shape

        if len(x1_shape) > 2:
            matmul = core.GEOperatorFactory.create_operator(
                "matmul" + self._accumulated_op_id(), "BatchMatMul").set_input(
                    "x1", x).set_input("x2", y).set_attr_bool(
                        "adj_x1",
                        transpose_x).set_attr_bool("adj_x2", transpose_y)
        elif len(x1_shape) == 2:
            matmul = core.GEOperatorFactory.create_operator(
                "matmul" + self._accumulated_op_id(),
                "MatMul").set_input("x1", x).set_input("x2", y).set_attr_bool(
571 572
                    "transpose_x1",
                    transpose_x).set_attr_bool("transpose_x2", transpose_y)
573 574 575
        else:
            assert False, "not support"
        return [matmul], [[0]]
576 577 578


class MulParser(AscendParserBase):
579

580 581 582 583 584 585 586
    def __init__(self, graph, var2geop):
        super(MulParser, self).__init__(graph, var2geop)
        self.parser_name = "mul"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        y = self._get_ge_input(self.op.input_arg_names[1])
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
        x_num_col_dims = self.op.attr("x_num_col_dims")
        y_num_col_dims = self.op.attr("y_num_col_dims")
        shape_x1 = self.op.block.var(self.op.input_arg_names[0]).shape
        shape_x2 = self.op.block.var(self.op.input_arg_names[1]).shape

        if x_num_col_dims == 1 and y_num_col_dims == 1:
            if len(shape_x1) == 2 and len(shape_x2) == 2:
                matmul = core.GEOperatorFactory.create_operator(
                    "mul" + self._accumulated_op_id(),
                    "MatMul").set_input("x1", x).set_input("x2", y)
            elif len(shape_x1) == 3 and len(shape_x2) == 2:
                flatten_x1 = core.GEOperatorFactory.create_operator(
                    "flatten" + self._accumulated_op_id(),
                    "Flatten").set_input("x", x)
                matmul = core.GEOperatorFactory.create_operator(
602 603 604
                    "mul" + self._accumulated_op_id(),
                    "MatMul").set_input("x1", flatten_x1,
                                        0).set_input("x2", y, 0)
605 606 607 608 609 610 611 612 613 614
            else:
                assert False, "not support"
        else:
            if len(shape_x1) == 3 and len(shape_x2) == 2:
                assert x_num_col_dims == 2, "only support 2"
                flatten_x1 = core.GEOperatorFactory.create_operator(
                    "flatten" + self._accumulated_op_id(),
                    "FlattenV2").set_input("x", x).set_attr_int32(
                        "axis", 0).set_attr_int32("end_axis", 1)
                matmul_m = core.GEOperatorFactory.create_operator(
615 616 617
                    "mul" + self._accumulated_op_id(),
                    "MatMul").set_input("x1", flatten_x1,
                                        0).set_input("x2", y, 0)
618 619
                matmul_transpose = core.GEOperatorFactory.create_operator(
                    "transpose" + self._accumulated_op_id(),
620 621
                    "TransposeD").set_input("x", matmul_m).set_attr_vec_int32(
                        "perm", [1, 0])
622 623 624 625 626 627
                tensor = self._create_ge_tensor(
                    [3], 2, [shape_x2[1], shape_x1[0], shape_x1[1]])
                const_shape = core.GEOperatorFactory.create_operator(
                    "shape" + self._accumulated_op_id(),
                    "Const").set_attr_tensor("value", tensor)
                reshape_matmul = core.GEOperatorFactory.create_operator(
628 629 630
                    "reshape" + self._accumulated_op_id(),
                    "Reshape").set_input("x", matmul_transpose).set_input(
                        "shape", const_shape).set_attr_int32("axis", 0)
631 632
                matmul = core.GEOperatorFactory.create_operator(
                    "transpose" + self._accumulated_op_id(),
633 634 635
                    "TransposeD").set_input("x",
                                            reshape_matmul).set_attr_vec_int32(
                                                "perm", [1, 2, 0])
636 637
            else:
                assert False, "not support"
638 639 640 641

        return [matmul], [[0]]


642
class LayerNormParser(AscendParserBase):
643

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    def __init__(self, graph, var2geop):
        super(LayerNormParser, self).__init__(graph, var2geop)
        self.parser_name = "layer_norm"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[2])
        scale = self._get_ge_input(self.op.input_arg_names[1])
        bias = self._get_ge_input(self.op.input_arg_names[0])
        epsilon = self.op.attr("epsilon")
        begin_norm_axis = self.op.attr("begin_norm_axis")
        x_dtype = self.op.block.var(self.op.input_arg_names[2]).dtype

        shape_tensor = core.GEOperatorFactory.create_operator(
            "shape" + self._accumulated_op_id(), "Shape").set_input("x", x)
        scale_expand = core.GEOperatorFactory.create_operator(
            "broadcast_to_d" + self._accumulated_op_id(),
            "BroadcastTo").set_input("x",
                                     scale).set_input("shape", shape_tensor)
        bias_expand = core.GEOperatorFactory.create_operator(
            "broadcast_to_d" + self._accumulated_op_id(),
664 665
            "BroadcastTo").set_input("x",
                                     bias).set_input("shape", shape_tensor)
666 667 668 669 670 671 672 673 674 675 676 677
        layer_norm = core.GEOperatorFactory.create_operator(
            "layer_norm" + self._accumulated_op_id(),
            "LayerNorm").set_input("x", x).set_input(
                "gamma",
                scale_expand).set_input("beta", bias_expand).set_attr_int32(
                    "begin_norm_axis", begin_norm_axis).set_attr_int32(
                        "begin_params_axis",
                        begin_norm_axis).set_attr_float("epsilon", epsilon)

        cast_dtype = 0 if self.ascend_helper.dtype2paddle_inv_map[str(
            x_dtype)] == 0 else 1
        y = core.GEOperatorFactory.create_operator(
678 679 680
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", layer_norm,
                              0).set_attr_int32("dst_type", cast_dtype)
681
        mean = core.GEOperatorFactory.create_operator(
682 683 684
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", layer_norm,
                              1).set_attr_int32("dst_type", cast_dtype)
685
        variance = core.GEOperatorFactory.create_operator(
686 687 688
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", layer_norm,
                              2).set_attr_int32("dst_type", cast_dtype)
689 690 691 692
        return [y, mean, variance], [[1], [2], [0]]


## activate function
693
class ReluParser(AscendParserBase):
694

695 696 697 698 699 700 701 702 703 704 705
    def __init__(self, graph, var2geop):
        super(ReluParser, self).__init__(graph, var2geop)
        self.parser_name = "relu"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        relu = core.GEOperatorFactory.create_operator(
            "relu" + self._accumulated_op_id(), "Relu").set_input("x", x)
        return [relu], [[0]]


706
class GeluParser(AscendParserBase):
707

708
    def __init__(self, graph, var2geop):
709 710
        super(GeluParser, self).__init__(graph, var2geop)
        self.parser_name = "gelu"
711 712

    def _apply(self):
713 714 715 716 717 718 719
        x = self._get_ge_input(self.op.input_arg_names[0])
        gelu = core.GEOperatorFactory.create_operator(
            "gelu" + self._accumulated_op_id(), "Gelu").set_input("x", x)
        return [gelu], [[0]]


class TanhParser(AscendParserBase):
720

721 722 723 724 725 726 727 728 729
    def __init__(self, graph, var2geop):
        super(TanhParser, self).__init__(graph, var2geop)
        self.parser_name = "tanh"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        tanh = core.GEOperatorFactory.create_operator(
            "tanh" + self._accumulated_op_id(), "Tanh").set_input("x", x)
        return [tanh], [[0]]
730 731


732
## loss function
733
class SoftmaxWithCrossEntropyParser(AscendParserBase):
734

735 736 737 738 739 740 741 742
    def __init__(self, graph, var2geop):
        super(SoftmaxWithCrossEntropyParser, self).__init__(graph, var2geop)
        self.parser_name = "softmax_with_cross_entropy"

    def _apply(self):
        label = self._get_ge_input(self.op.input_arg_names[0])
        logits = self._get_ge_input(self.op.input_arg_names[1])
        cls_num = self.op.block.var(self.op.input_arg_names[1]).shape[1]
743

744
        softmax = core.GEOperatorFactory.create_operator(
745 746
            "softmax" + self._accumulated_op_id(),
            "SoftmaxV2").set_input("x", logits)
747
        label = core.GEOperatorFactory.create_operator(
748 749
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", label).set_attr_int32("dst_type", 3)
750 751

        tensoron = self._create_ge_tensor([1], 5, 1)
752 753 754
        on = core.GEOperatorFactory.create_operator(
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensoron)
755
        tensoroff = self._create_ge_tensor([1], 5, 0)
756 757 758 759 760
        off = core.GEOperatorFactory.create_operator(
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensoroff)
        self._mark_as_input(on)
        self._mark_as_input(off)
761
        onehot = core.GEOperatorFactory.create_operator(
762 763 764 765 766
            "onehot" + self._accumulated_op_id(),
            "OneHotD").set_input("x",
                                 label).set_input("on_value", on).set_input(
                                     "off_value",
                                     off).set_attr_int32("depth", cls_num)
767
        squeeze = core.GEOperatorFactory.create_operator(
768 769
            "mul" + self._accumulated_op_id(),
            "Squeeze").set_input("x", onehot)
770 771

        loss_all = core.GEOperatorFactory.create_operator(
772
            "loss" + self._accumulated_op_id(),
773 774 775
            "SoftmaxCrossEntropyWithLogits").set_input("features",
                                                       logits).set_input(
                                                           "labels", squeeze)
776
        loss = core.GEOperatorFactory.create_operator(
777 778
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", loss_all, 0).set_attr_int32("dst_type", 0)
779 780 781 782
        loss_expand = core.GEOperatorFactory.create_operator(
            "unsqueeze" + self._accumulated_op_id(),
            "Unsqueeze").set_input("x", loss).set_attr_vec_int32("axes", [1])
        return [label, softmax, loss_expand], [[2], [1]]
783 784


785
class SoftMaxParser(AscendParserBase):
786

787
    def __init__(self, graph, var2geop):
788 789
        super(SoftMaxParser, self).__init__(graph, var2geop)
        self.parser_name = "softmax"
790 791

    def _apply(self):
792 793
        logits = self._get_ge_input(self.op.input_arg_names[0])
        axes = self.op.attr("axis")
794

795
        softmax = core.GEOperatorFactory.create_operator(
796 797 798
            "softmax" + self._accumulated_op_id(),
            "SoftmaxV2").set_input("x",
                                   logits).set_attr_vec_int32("axes", [axes])
799
        return [softmax], [[0]]
800 801


802
## general
803
class ShapeParser(AscendParserBase):
804

805 806 807 808 809 810 811 812 813 814 815 816
    def __init__(self, graph, var2geop):
        super(ShapeParser, self).__init__(graph, var2geop)
        self.parser_name = "shape"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        shape = core.GEOperatorFactory.create_operator(
            "shape" + self._accumulated_op_id(), "Shape").set_input("x", x)
        return [shape], [[0]]


class FillConstantParser(AscendParserBase):
817

818 819 820 821 822 823 824 825
    def __init__(self, graph, var2geop):
        super(FillConstantParser, self).__init__(graph, var2geop)
        self.parser_name = "fill_constant"

    def _apply(self):
        shape = self.op.attr("shape")
        dtype = self.op.attr("dtype")
        value = self.op.attr("value")
826

827 828
        tensor = self._create_ge_tensor(shape, dtype, value)
        const = core.GEOperatorFactory.create_operator(
829 830
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor)
831 832
        self._mark_as_input(const)
        if self.op.block.var(self.op.output('Out')[0]).persistable:
833 834
            #print("%s is Persistable in fill_constant" %
            #      (self.op.output('Out')[0]))
835 836
            var = core.GEOperatorFactory.create_operator(
                self.op.output('Out')[0], "Variable")
837 838 839 840
            var.update_output_desc(
                "y",
                core.GETensorDesc(core.GEShape(shape), core.GEFormat.FORMAT_ND,
                                  core.GEDataType.DT_FLOAT))
841
            assign = core.GEOperatorFactory.create_operator(
842 843
                "assign" + self._accumulated_op_id(),
                "Assign").set_input("value", const).set_input("ref", var)
844
            return [const], [[0]]
845
        return [const], [[0]]
846 847 848


class TruncatedNormalParser(AscendParserBase):
849

850 851 852 853 854 855 856 857 858 859
    def __init__(self, graph, var2geop):
        super(TruncatedNormalParser, self).__init__(graph, var2geop)
        self.parser_name = "truncated_gaussian_random"

    def _apply(self):
        shape = self.op.attr("shape")
        dtype = self.op.attr("dtype")
        mean = self.op.attr("mean")
        std = self.op.attr("std")
        seed = self.op.attr("seed")
860

861 862
        tensor1 = self._create_ge_tensor([len(shape)], 2, shape)
        shape_tensor = core.GEOperatorFactory.create_operator(
863 864
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor1)
865 866
        tensor2 = self._create_ge_tensor([1], dtype, mean)
        mean_tensor = core.GEOperatorFactory.create_operator(
867 868
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor2)
869 870
        tensor3 = self._create_ge_tensor([1], dtype, std)
        std_tensor = core.GEOperatorFactory.create_operator(
871 872
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor3)
873 874
        tensor4 = self._create_ge_tensor([1], dtype, mean - 2 * std)
        min_tensor = core.GEOperatorFactory.create_operator(
875 876
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor4)
877 878
        tensor5 = self._create_ge_tensor([1], dtype, mean + 2 * std)
        max_tensor = core.GEOperatorFactory.create_operator(
879 880
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor5)
881 882 883 884 885 886 887 888 889 890

        self._mark_as_input(shape_tensor)
        self._mark_as_input(mean_tensor)
        self._mark_as_input(std_tensor)
        self._mark_as_input(min_tensor)
        self._mark_as_input(max_tensor)

        truncated_normal = core.GEOperatorFactory.create_operator(
            "truncated_normal" + self._accumulated_op_id(),
            "ParameterizedTruncatedNormal").set_input(
891 892 893 894 895
                "shape",
                shape_tensor).set_input("means", mean_tensor).set_input(
                    "stdevs",
                    std_tensor).set_input("min", min_tensor).set_input(
                        "max", max_tensor).set_attr_int32("seed", 0)
896 897 898

        ## wirte the output of truncatedNormal from startup_program to main_program
        if self.op.block.var(self.op.output('Out')[0]).persistable:
899 900
            #print("%s is Persistable in truncated_normal" %
            #      (self.op.output('Out')[0]))
901 902
            var = core.GEOperatorFactory.create_operator(
                self.op.output('Out')[0], "Variable")
903 904 905 906
            var.update_output_desc(
                "y",
                core.GETensorDesc(core.GEShape(shape), core.GEFormat.FORMAT_ND,
                                  core.GEDataType.DT_FLOAT))
907
            assign = core.GEOperatorFactory.create_operator(
908 909 910
                "assign" + self._accumulated_op_id(),
                "Assign").set_input("value",
                                    truncated_normal).set_input("ref", var)
911 912 913 914
            return [
                shape_tensor, mean_tensor, std_tensor, min_tensor, max_tensor,
                truncated_normal
            ], [[-1]]
915 916 917 918 919
        #else:
        #    print(
        #        "self.op.output('Out')[0] is not persistable in truncated_noraml"
        #    )
        return [truncated_normal], [[0]]
920 921


922
class GatherParser(AscendParserBase):
923

924
    def __init__(self, graph, var2geop):
925 926
        super(GatherParser, self).__init__(graph, var2geop)
        self.parser_name = "gather"
927 928

    def _apply(self):
929 930 931 932 933
        index = self._get_ge_input(self.op.input_arg_names[0])
        x = self._get_ge_input(self.op.input_arg_names[1])
        clo = self.op.block.var(self.op.input_arg_names[1]).shape[-1]

        gather = core.GEOperatorFactory.create_operator(
934 935 936 937
            "gather" + self._accumulated_op_id(),
            "Gather").set_input("x", x).set_input("indices",
                                                  index).set_attr_bool(
                                                      "validate_indices", True)
938 939 940 941
        return [gather], [[0]]


class ScatterParser(AscendParserBase):
942

943 944 945 946 947 948 949 950 951 952 953 954 955
    def __init__(self, graph, var2geop):
        super(ScatterParser, self).__init__(graph, var2geop)
        self.parser_name = "scatter"

    def _apply(self):
        index = self._get_ge_input(self.op.input_arg_names[0])
        x = self._get_ge_input(self.op.input_arg_names[1])
        updates = self._get_ge_input(self.op.input_arg_names[2])
        overwrite = self.op.attr("overwrite")
        index_shape = self.op.block.var(self.op.input_arg_names[0]).shape

        if len(index_shape) == 1:
            index = core.GEOperatorFactory.create_operator(
956 957 958
                "unsqueeze" + self.getid(),
                "Unsqueeze").set_input("x",
                                       index).set_attr_vec_int32("axes", [1])
959 960 961
        if not overwrite:
            scatter_value = core.GEOperatorFactory.create_operator(
                "scatter" + self._accumulated_op_id(),
962 963
                "TensorScatterAdd").set_input("x", x).set_input(
                    "indices", index).set_input("updates", updates)
964 965 966
        else:
            scatter_value = core.GEOperatorFactory.create_operator(
                "scatter" + self._accumulated_op_id(),
967 968
                "TensorScatterUpdate").set_input("x", x).set_input(
                    "indices", index).set_input("updates", updates)
J
Jiangxinz 已提交
969
        return [x, index, updates, scatter_value], [[-1]]
970 971 972


class CastParser(AscendParserBase):
973

974 975 976 977 978 979 980 981
    def __init__(self, graph, var2geop):
        super(CastParser, self).__init__(graph, var2geop)
        self.parser_name = "cast"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        dtype = self.op.attr("out_dtype")
        cast = core.GEOperatorFactory.create_operator(
982 983
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", x).set_attr_int32("dst_type", dtype)
984 985 986 987
        return [cast], [[0]]


class AssignParser(AscendParserBase):
988

989 990 991 992 993 994 995 996
    def __init__(self, graph, var2geop):
        super(AssignParser, self).__init__(graph, var2geop)
        self.parser_name = "assign"

    def _apply(self):
        const = self._get_ge_input(self.op.input_arg_names[0])
        var = self._get_ge_input(self.op.input_arg_names[1])
        assign = core.GEOperatorFactory.create_operator(
997 998
            "assign" + self._accumulated_op_id(),
            "Assign").set_input("value", const).set_input("ref", var)
999 1000 1001 1002
        return [assign], [[0]]


class ScaleParser(AscendParserBase):
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    def __init__(self, graph, var2geop):
        super(ScaleParser, self).__init__(graph, var2geop)
        self.parser_name = "scale"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        scale = self.op.attr("scale")
        bias = self.op.attr("bias")
        bias_after_scale = self.op.attr("bias_after_scale")

        if bias_after_scale:
            scale_value = core.GEOperatorFactory.create_operator(
1016 1017 1018 1019 1020
                "scale" + self._accumulated_op_id(),
                "Power").set_input("x", x).set_attr_float(
                    "power",
                    1.0).set_attr_float("scale",
                                        scale).set_attr_float("shift", bias)
1021 1022
        else:
            x_add_bias = core.GEOperatorFactory.create_operator(
1023 1024
                "adds" + self._accumulated_op_id(),
                "Adds").set_input("x", x).set_attr_float("value", bias)
1025
            scale_value = core.GEOperatorFactory.create_operator(
1026 1027 1028 1029 1030
                "scale" + self._accumulated_op_id(),
                "Power").set_input("x", x_add_bias).set_attr_float(
                    "power",
                    1.0).set_attr_float("scale",
                                        scale).set_attr_float("shift", 0.0)
1031 1032 1033
        return [scale_value], [[0]]


1034
class SliceParser(AscendParserBase):
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    def __init__(self, graph, var2geop):
        super(SliceParser, self).__init__(graph, var2geop)
        self.parser_name = "slice"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        axes = self.op.attr("axes")
        starts = self.op.attr("starts")
        ends = self.op.attr("ends")

        x_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        len_shape = len(x_shape)
        axes_cor = list(range(len_shape))
        starts_cor, ends_cor = [], []
        cnt = 0
        for i in range(len_shape):
            starts_cor.append(starts[cnt] if i in axes else 0)
            if i in axes and ends[cnt] <= x_shape[i]:
                ends_cor.append(ends[cnt])
            else:
                ends_cor.append(x_shape[i])
            if i in axes:
                cnt += 1
        size = [ends_cor[i] - starts_cor[i] for i in range(len(axes_cor))]

        assert len(axes_cor) == len(starts_cor) == len(
            ends_cor), "the three fields must have same size"
        slice_value = core.GEOperatorFactory.create_operator(
1064 1065 1066
            "slice" + self._accumulated_op_id(),
            "SliceD").set_input("x", x).set_attr_vec_int32(
                "offsets", starts_cor).set_attr_vec_int32("size", size)
1067 1068 1069 1070

        return [slice_value], [[0]]


1071
class ReshapeParser(AscendParserBase):
1072

1073 1074 1075 1076 1077
    def __init__(self, graph, var2geop):
        super(ReshapeParser, self).__init__(graph, var2geop)
        self.parser_name = "reshape2"

    def _apply(self):
1078 1079
        org_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        assert org_shape.count(-1) == 0, "do not allow the dim is -1"
1080
        shape = self.op.attr("shape")
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        for cnt in range(len(shape)):
            if shape[cnt] == 0:
                shape[cnt] = org_shape[cnt]

        if -1 in shape:
            assert shape.count(-1) == 1, "only allow one dim is -1"
            mul_res_org = reduce(lambda x, y: x * y, org_shape)
            mul_res_refine = reduce(lambda x, y: x * y, shape) * -1
            idx = shape.index(-1)
            shape[idx] = mul_res_org // mul_res_refine

        x = self._get_ge_input(self.op.input_arg_names[0])
1093 1094
        tensor = self._create_ge_tensor([len(shape)], 2, shape)
        const_shape = core.GEOperatorFactory.create_operator(
1095 1096
            "shape" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor)
1097
        reshape = core.GEOperatorFactory.create_operator(
1098 1099 1100 1101
            "reshape" + self._accumulated_op_id(),
            "Reshape").set_input("x", x).set_input("shape",
                                                   const_shape).set_attr_int32(
                                                       "axis", 0)
1102 1103 1104 1105 1106 1107 1108
        x_shape = core.GEOperatorFactory.create_operator(
            "shape" + self._accumulated_op_id(), "Shape").set_input("x", x)

        return [x_shape, reshape], [[1], [0]]


class TransposeParser(AscendParserBase):
1109

1110 1111 1112 1113 1114 1115 1116 1117
    def __init__(self, graph, var2geop):
        super(TransposeParser, self).__init__(graph, var2geop)
        self.parser_name = "transpose2"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        perm = self.op.attr("axis")
        transpose = core.GEOperatorFactory.create_operator(
1118 1119
            "transpose" + self._accumulated_op_id(),
            "TransposeD").set_input("x", x).set_attr_vec_int32("perm", perm)
1120 1121 1122 1123 1124 1125 1126
        x_shape = core.GEOperatorFactory.create_operator(
            "shape" + self._accumulated_op_id(), "Shape").set_input("x", x)

        return [x_shape, transpose], [[1], [0]]


class AccuracyParser(AscendParserBase):
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    def __init__(self, graph, var2geop):
        super(AccuracyParser, self).__init__(graph, var2geop)
        self.parser_name = "accuracy"

    def _apply(self):
        pred = self._get_ge_input(self.op.input_arg_names[0])
        label = self._get_ge_input(self.op.input_arg_names[1])
        logits = self._get_ge_input(self.op.input_arg_names[2])

        pred = core.GEOperatorFactory.create_operator(
1138 1139
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", pred).set_attr_int32("dst_type", 3)
1140
        label = core.GEOperatorFactory.create_operator(
1141 1142
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", label).set_attr_int32("dst_type", 3)
1143
        equal = core.GEOperatorFactory.create_operator(
1144 1145
            "equal" + self._accumulated_op_id(),
            "Equal").set_input("x1", pred).set_input("x2", label)
1146
        cast = core.GEOperatorFactory.create_operator(
1147 1148
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", equal).set_attr_int32("dst_type", 0)
1149 1150
        acc = core.GEOperatorFactory.create_operator(
            "mean" + self._accumulated_op_id(), "ReduceMeanD").set_input(
1151 1152
                "x", cast).set_attr_bool("keep_dims",
                                         False).set_attr_vec_int32("axes", [])
1153 1154
        correct = core.GEOperatorFactory.create_operator(
            "sum" + self._accumulated_op_id(), "ReduceSumD").set_input(
1155 1156
                "x", cast).set_attr_bool("keep_dims",
                                         False).set_attr_vec_int32("axes", [])
1157 1158 1159 1160
        ones_tensor = core.GEOperatorFactory.create_operator(
            "oneslike" + self._accumulated_op_id(),
            "OnesLike").set_input("x", label)
        ones_tensor = core.GEOperatorFactory.create_operator(
1161 1162
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", ones_tensor).set_attr_int32("dst_type", 0)
1163
        total = core.GEOperatorFactory.create_operator(
1164 1165 1166
            "sum" + self._accumulated_op_id(),
            "ReduceSumD").set_input("x", ones_tensor).set_attr_bool(
                "keep_dims", False).set_attr_vec_int32("axes", [])
1167 1168 1169 1170 1171

        return [acc, correct, total], [[0], [1], [2]]


class TopkParser(AscendParserBase):
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    def __init__(self, graph, var2geop):
        super(TopkParser, self).__init__(graph, var2geop)
        self.parser_name = "top_k"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        k = self.op.attr("k")

        tensor = self._create_ge_tensor([1], 2, k)
        const_k = core.GEOperatorFactory.create_operator(
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor)
        cast_x = core.GEOperatorFactory.create_operator(
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", x).set_attr_int32("dst_type", 1)
        topk = core.GEOperatorFactory.create_operator(
            "topk" + self._accumulated_op_id(),
            "TopK").set_input("x", cast_x).set_input("k", const_k)
        value = core.GEOperatorFactory.create_operator(
1192 1193
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", topk, 0).set_attr_int32("dst_type", 0)
1194
        index = core.GEOperatorFactory.create_operator(
1195 1196
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", topk, 1).set_attr_int32("dst_type", 0)
1197 1198 1199 1200
        return [value, index], [[1], [0]]


class LookupTableParser(AscendParserBase):
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210
    def __init__(self, graph, var2geop):
        super(LookupTableParser, self).__init__(graph, var2geop)
        self.parser_name = "lookup_table"

    def _apply(self):
        ids = self._get_ge_input(self.op.input_arg_names[0])
        w = self._get_ge_input(self.op.input_arg_names[1])

        ids_squeeze = core.GEOperatorFactory.create_operator(
1211 1212
            "squeeze" + self._accumulated_op_id(),
            "Squeeze").set_input("x", ids).set_attr_vec_int32("axes", [-1])
1213
        out = core.GEOperatorFactory.create_operator(
1214 1215
            "lookup" + self._accumulated_op_id(),
            "Gather").set_input("x", w).set_input("indices", ids_squeeze)
1216 1217 1218 1219
        return [out], [[0]]


class StackParser(AscendParserBase):
1220

1221 1222 1223 1224 1225 1226 1227 1228
    def __init__(self, graph, var2geop):
        super(StackParser, self).__init__(graph, var2geop)
        self.parser_name = "stack"

    def _apply(self):
        tiles = len(self.op.input_arg_names)
        data_x_lst = []
        for index in range(tiles):
1229 1230
            data_x_lst.append(self._get_ge_input(
                self.op.input_arg_names[index]))
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        axis = self.op.attr("axis")

        data_x = data_x_lst[0]
        tensor = self._create_ge_tensor([1], 2, axis)
        tensor_axis = core.GEOperatorFactory.create_operator(
            "axis" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor)
        expand = core.GEOperatorFactory.create_operator(
            "expand" + self._accumulated_op_id(),
            "ExpandDims").set_input("x", data_x).set_input("axis", tensor_axis)

        stack = core.GEOperatorFactory.create_operator(
1243 1244 1245 1246
            "stack" + self._accumulated_op_id(), "TileWithAxis").set_input(
                "x",
                expand).set_attr_int32("axis",
                                       axis).set_attr_int32("tiles", tiles)
1247 1248 1249 1250 1251

        return [stack], [[0]]


class UnSqueezeParser(AscendParserBase):
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    def __init__(self, graph, var2geop):
        super(UnSqueezeParser, self).__init__(graph, var2geop)
        self.parser_name = "unsqueeze2"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        axes = self.op.attr('axes')

        output = core.GEOperatorFactory.create_operator(
            "unsqueeze" + self._accumulated_op_id(),
            "Unsqueeze").set_input("x", x).set_attr_vec_int32("axes", axes)
        shape = core.GEOperatorFactory.create_operator(
1265 1266
            "shape" + self._accumulated_op_id(),
            "Shape").set_input("x", output)
1267 1268 1269 1270 1271
        return [shape, output], [[1], [0]]


## parallel
class AllGatherParser(AscendParserBase):
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    def __init__(self, graph, var2geop):
        super(AllGatherParser, self).__init__(graph, var2geop)
        self.parser_name = "c_allgather"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        rank_size = self.op.attr("rank_size")
        group = self.op.attr("group")

        allgather = core.GEOperatorFactory.create_operator(
1283 1284 1285
            "allgather" + self._accumulated_op_id(),
            "HcomAllGather").set_input("x", x).set_attr_int32(
                "rank_size", rank_size).set_attr_string("group", group)
1286 1287 1288 1289
        return [allgather], [[0]]


class AllReduceParser(AscendParserBase):
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    def __init__(self, graph, var2geop, reduction):
        super(AllReduceParser, self).__init__(graph, var2geop)
        self.parser_name = "c_allreduce_" + reduction
        self.reduction = reduction

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        reduction = self.reduction
        ring_id = self.op.attr("ring_id")
        group = "hcom_group_" + str(ring_id)
        fusion = None  #self.op.attr("fusion")
        fusion_id = None  #self.op.attr("fusion_id")

        allreduce = core.GEOperatorFactory.create_operator(
1305 1306 1307
            "allreduce" + self._accumulated_op_id(),
            "HcomAllReduce").set_input("x", x).set_attr_string(
                "reduction", reduction).set_attr_string("group", group)
1308 1309 1310 1311 1312 1313 1314 1315 1316
        if fusion is not None:
            allreduce.set_attr_int32("fusion", fusion)

        if fusion_id is not None:
            allreduce.set_attr_int32("fusion_id", fusion_id)
        return [allreduce], [[0]]


class AllReduceSumParser(AllReduceParser):
1317

1318 1319 1320 1321 1322
    def __init__(self, graph, var2geop):
        super(AllReduceSumParser, self).__init__(graph, var2geop, 'sum')


class AllReduceMaxParser(AllReduceParser):
1323

1324 1325 1326 1327 1328
    def __init__(self, graph, var2geop):
        super(AllReduceMaxParser, self).__init__(graph, var2geop, 'max')


class BroadcastParser(AscendParserBase):
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
    def __init__(self, graph, var2geop):
        super(BroadcastParser, self).__init__(graph, var2geop)
        self.parser_name = "c_broadcast"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        root_rank = self.op.attr("root_rank")
        group = self.op.attr("group")

        broadcast = core.GEOperatorFactory.create_operator(
1340 1341 1342
            "broadcast" + self._accumulated_op_id(),
            "HcomBroadcast").set_input("x", x).set_attr_int32(
                "root_rank", root_rank).set_attr_string("group", group)
1343 1344 1345 1346
        return [broadcast], [[0]]


class ReduceScatterParser(AscendParserBase):
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
    def __init__(self, graph, var2geop):
        super(ReduceScatterParser, self).__init__(graph, var2geop)
        self.parser_name = "c_reduce_scatter"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        reduction = self.op.attr("reduction")
        group = self.op.attr("group")
        rank_size = self.op.attr("rank_size")

        reduce_scatter = core.GEOperatorFactory.create_operator(
            "reducescatter" + self._accumulated_op_id(),
            "HcomReduceScatter").set_input("x", x).set_attr_string(
1361 1362 1363
                "reduction",
                reduction).set_attr_string("group", group).set_attr_int32(
                    "rank_size", rank_size)
1364 1365 1366 1367
        return [reduce_scatter], [[0]]


class SendParser(AscendParserBase):
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
    def __init__(self, graph, var2geop):
        super(SendParser, self).__init__(graph, var2geop)
        self.parser_name = "c_send"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        sr_tag = self.op.attr("sr_tag")
        dest_rank = self.op.attr("dest_rank")
        group = self.op.attr("group")

        send = core.GEOperatorFactory.create_operator(
            "send" + self._accumulated_op_id(), "HcomSend").set_input(
                "x", x).set_attr_int32("sr_tag", sr_tag).set_attr_int32(
                    "dest_rank", dest_rank).set_attr_string("group", group)
        return [send], [[0]]


class ReceiveParser(AscendParserBase):
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    def __init__(self, graph, var2geop):
        super(ReceiveParser, self).__init__(graph, var2geop)
        self.parser_name = "c_receive"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        sr_tag = self.op.attr("sr_tag")
        src_rank = self.op.attr("src_rank")
        group = self.op.attr("group")
        shape = self.op.attr("shape")
        dtype = self.op.attr("dtype")

        receive = core.GEOperatorFactory.create_operator(
1401 1402 1403 1404 1405 1406 1407
            "receive" + self._accumulated_op_id(),
            "HcomReceive").set_input("x", x).set_attr_int32(
                "sr_tag",
                sr_tag).set_attr_int32("src_rank", src_rank).set_attr_string(
                    "group", group).set_attr_vec_int32("shape",
                                                       shape).set_attr_int32(
                                                           "dtype", dtype)
1408 1409 1410 1411
        return [receive], [[0]]


class RangeParser(AscendParserBase):
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
    def __init__(self, graph, var2geop):
        super(RangeParser, self).__init__(graph, var2geop)
        self.parser_name = "range"

    def _apply(self):
        # TODO not support range type yet
        start = self._get_ge_input(self.op.input_arg_names[0])
        end = self._get_ge_input(self.op.input_arg_names[1])
        delta = self._get_ge_input(self.op.input_arg_names[2])

        ge_range = core.GEOperatorFactory.create_operator(
            "range" + self._accumulated_op_id(), "Range")\
              .set_input("start", end)\
              .set_input("limit", start) \
              .set_input("delta", delta)

        return [ge_range], [[0]]


class UniformRandomParser(AscendParserBase):
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
    def __init__(self, graph, var2geop):
        super(UniformRandomParser, self).__init__(graph, var2geop)
        self.parser_name = "uniform_random"

    def _apply(self):
        shape = self.op.attr("shape")

        min_v = self.op.attr("min")
        max_v = self.op.attr("max")
        seed = self.op.attr("seed")
        dtype = self.op.attr("dtype")
1445
        assert max_v > min_v, "assert max_v > min_v, but received " + \
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
               "as max_v={}, min_v={} ".format(max_v, min_v)

        tensor1 = self._create_ge_tensor([len(shape)], 2, shape)
        shape_tensor = core.GEOperatorFactory.create_operator(
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor1)

        ge_ur = core.GEOperatorFactory.create_operator(
            "uniform_random" + self._accumulated_op_id(), "RandomUniform")\
            .set_input("shape", shape_tensor)\
            .set_attr_dtype("dtype", self.ascend_helper.dtype2ge(dtype))  \
            .set_attr_int32("seed", seed)\
            .set_attr_int32("seed2", seed)

        scale = max_v - min_v

        scale_value = core.GEOperatorFactory.create_operator(
1463 1464 1465 1466 1467
            "scale" + self._accumulated_op_id(),
            "Power").set_input("x", ge_ur).set_attr_float(
                "power",
                1.0).set_attr_float("scale",
                                    scale).set_attr_float("shift", min_v)
1468 1469 1470 1471 1472

        return [scale_value], [[0]]


class EqualParser(AscendParserBase):
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    def __init__(self, graph, var2geop):
        super(EqualParser, self).__init__(graph, var2geop)
        self.parser_name = "equal"

    def _apply(self):
        data_x1 = self._get_ge_input(self.op.input_arg_names[0])
        data_x2 = self._get_ge_input(self.op.input_arg_names[1])
        equal = core.GEOperatorFactory.create_operator("equal" \
           + self._accumulated_op_id(), "Equal")\
             .set_input("x1", data_x1)\
             .set_input("x2", data_x2)
        return [equal], [[0]]


class ExpandParser(AscendParserBase):
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
    def __init__(self, graph, var2geop):
        super(ExpandParser, self).__init__(graph, var2geop)
        self.parser_name = "expand"

    def _apply(self):
        data_x1_shape = self._get_ge_input(self.op.input_arg_names[0])
        expand_times = self.op.attr('expand_times')

        tensor = self._create_ge_tensor([len(expand_times)], 2, expand_times)
        expand_tensor = core.GEOperatorFactory.\
           create_operator("const" + self._accumulated_op_id(), "Const")\
              .set_attr_tensor("value", tensor)

        assign = core.GEOperatorFactory\
           .create_operator("tile" + self._accumulated_op_id(), "Tile")\
              .set_input("x", data_x1_shape)\
              .set_input("multiples", expand_tensor)
        return [assign], [[0]]


class SqueezeParser(AscendParserBase):
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    def __init__(self, graph, var2geop):
        super(SqueezeParser, self).__init__(graph, var2geop)
        self.parser_name = "squeeze2"

    def _apply(self):
        tensor = self._get_ge_input(self.op.input_arg_names[0])
        axes = self.op.attr("axes")

        data_squeezed = core.GEOperatorFactory\
           .create_operator("squeeze" + self._accumulated_op_id(), "Squeeze")\
             .set_input("x", tensor)\
             .set_attr_vec_int32("axes", axes)
        shape = core.GEOperatorFactory.create_operator(
            "shape" + self._accumulated_op_id(),
            "Shape").set_input("x", data_squeezed)
        return [shape, data_squeezed], [[1], [0]]


#****************************************************************#
#***************************            *************************#
#***************************            *************************#
#*************************** GradParser *************************#
#***************************            *************************#
#***************************            *************************#
#****************************************************************#
## grad
class ReduceSumGradParser(AscendParserBase):
1539

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    def __init__(self, graph, var2geop):
        super(ReduceSumGradParser, self).__init__(graph, var2geop)
        self.parser_name = "reduce_sum_grad"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        input = self._get_ge_input(self.op.input_arg_names[1])

        shape_tensor = core.GEOperatorFactory.create_operator(
            "shape" + self._accumulated_op_id(),
            "Shape").set_input("x", input, 0)
        tensoron = self._create_ge_tensor([1], 2, -1)
        const = core.GEOperatorFactory.create_operator(
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensoron)
        self._mark_as_input(const)

        reduce_sum = core.GEOperatorFactory.create_operator(
            "broadcast_to_d" + self._accumulated_op_id(),
            "BroadcastTo").set_input("x", x).set_input("shape", shape_tensor)
        #reduce_sum = core.GEOperatorFactory.create_operator("expand" + self._accumulated_op_id(), "ExpandDims").set_input("x", reduce_sum).set_input("axis", const)

        return [reduce_sum], [[0]]


class MatMulGradParser(AscendParserBase):
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
    def __init__(self, graph, var2geop):
        super(MatMulGradParser, self).__init__(graph, var2geop)
        self.parser_name = "matmul_grad"

    def _apply(self):
        out_grad = self._get_ge_input(self.op.input_arg_names[0])
        x = self._get_ge_input(self.op.input_arg_names[1])
        y = self._get_ge_input(self.op.input_arg_names[2])
        transpose_x = self.op.attr("transpose_X")
        transpose_y = self.op.attr("transpose_Y")

        out_grad_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        x_shape = self.op.block.var(self.op.input_arg_names[1]).shape
        y_shape = self.op.block.var(self.op.input_arg_names[2]).shape

        if len(x_shape) > 2:
            if transpose_y:
                x_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "BatchMatMul").set_input("x1", out_grad).set_input(
1587 1588 1589
                        "x2",
                        y).set_attr_bool("adj_x1",
                                         False).set_attr_bool("adj_x2", False)
1590 1591 1592
                y_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "BatchMatMul").set_input("x1", out_grad).set_input(
1593 1594 1595
                        "x2",
                        x).set_attr_bool("adj_x1",
                                         True).set_attr_bool("adj_x2", False)
1596 1597 1598 1599
            else:
                x_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "BatchMatMul").set_input("x1", out_grad).set_input(
1600 1601 1602
                        "x2",
                        y).set_attr_bool("adj_x1",
                                         False).set_attr_bool("adj_x2", True)
1603 1604
                y_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
1605 1606
                    "BatchMatMul").set_input(
                        "x1", x).set_input("x2", out_grad).set_attr_bool(
1607 1608 1609 1610 1611 1612
                            "adj_x1", True).set_attr_bool("adj_x2", False)
        else:
            if transpose_y:
                x_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "MatMul").set_input("x1", out_grad).set_input(
1613 1614 1615
                        "x2", y).set_attr_bool("transpose_x1",
                                               False).set_attr_bool(
                                                   "transpose_x2", False)
1616 1617 1618
                y_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "MatMul").set_input("x1", out_grad).set_input(
1619 1620 1621
                        "x2", x).set_attr_bool("transpose_x1",
                                               True).set_attr_bool(
                                                   "transpose_x2", False)
1622 1623 1624 1625
            else:
                x_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "MatMul").set_input("x1", out_grad).set_input(
1626 1627 1628
                        "x2", y).set_attr_bool("transpose_x1",
                                               False).set_attr_bool(
                                                   "transpose_x2", True)
1629 1630 1631
                y_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "MatMul").set_input("x1", x).set_input(
1632 1633 1634
                        "x2", out_grad).set_attr_bool("transpose_x1",
                                                      True).set_attr_bool(
                                                          "transpose_x2", False)
1635 1636 1637 1638 1639

        return [x_grad, y_grad], [[0], [1]]


class MulGradParser(AscendParserBase):
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
    def __init__(self, graph, var2geop):
        super(MulGradParser, self).__init__(graph, var2geop)
        self.parser_name = "mul_grad"

    def _apply(self):
        out_grad = self._get_ge_input(self.op.input_arg_names[0])
        x = self._get_ge_input(self.op.input_arg_names[1])
        y = self._get_ge_input(self.op.input_arg_names[2])
        x_num_col_dims = self.op.attr("x_num_col_dims")
        y_num_col_dims = self.op.attr("y_num_col_dims")

        shape_out_grad = self.op.block.var(self.op.input_arg_names[0]).shape
        shape_x = self.op.block.var(self.op.input_arg_names[1]).shape
        shape_y = self.op.block.var(self.op.input_arg_names[2]).shape

        if x_num_col_dims == 1 and y_num_col_dims == 1:
            if len(shape_x) == 2 and len(shape_y) == 2:
                x_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "MatMul").set_input("x1", out_grad).set_input(
1661 1662 1663
                        "x2", y).set_attr_bool("transpose_x1",
                                               False).set_attr_bool(
                                                   "transpose_x2", True)
1664 1665 1666
                y_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "MatMul").set_input("x1", x).set_input(
1667 1668 1669
                        "x2", out_grad).set_attr_bool("transpose_x1",
                                                      True).set_attr_bool(
                                                          "transpose_x2", False)
1670 1671 1672 1673 1674 1675
            elif len(shape_x) == 3 and len(shape_y) == 2:
                flatten_x = core.GEOperatorFactory.create_operator(
                    "flatten" + self._accumulated_op_id(),
                    "Flatten").set_input("x", x)
                x_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
1676 1677 1678 1679
                    "MatMul").set_input("x1", out_grad).set_input(
                        "x2", y).set_attr_bool("transpose_x1",
                                               False).set_attr_bool(
                                                   "transpose_x2", True)
1680 1681 1682 1683 1684 1685 1686 1687
                if len(shape_out_grad) == 2:
                    x_grad = core.GEOperatorFactory.create_operator(
                        "unsqueeze" + self._accumulated_op_id(),
                        "Unsqueeze").set_input("x", x_grad).set_attr_vec_int32(
                            "axes", [1])

                y_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
1688 1689 1690 1691
                    "MatMul").set_input("x1", flatten_x).set_input(
                        "x2", out_grad).set_attr_bool("transpose_x1",
                                                      True).set_attr_bool(
                                                          "transpose_x2", False)
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        else:
            if len(shape_x) == 3 and len(shape_y) == 2:
                assert x_num_col_dims == 2, "only support 2"
                flatten_x = core.GEOperatorFactory.create_operator(
                    "flatten" + self._accumulated_op_id(),
                    "FlattenV2").set_input("x", x).set_attr_int32(
                        "axis", 0).set_attr_int32("end_axis", 1)
                flatten_out_grad = core.GEOperatorFactory.create_operator(
                    "flatten" + self._accumulated_op_id(),
                    "FlattenV2").set_input("x", out_grad).set_attr_int32(
                        "axis", 0).set_attr_int32("end_axis", 1)

                y_unsqueeze = core.GEOperatorFactory.create_operator(
                    "unsqueeze" + self._accumulated_op_id(),
                    "Unsqueeze").set_input("x",
                                           y).set_attr_vec_int32("axes", [0])
1708 1709 1710 1711
                y_stack = core.GEOperatorFactory.create_operator(
                    "stack" + self._accumulated_op_id(),
                    "TileWithAxis").set_input("x", y_unsqueeze).set_attr_int32(
                        "axis", 0).set_attr_int32("tiles", shape_out_grad[0])
1712 1713 1714
                x_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "BatchMatMul").set_input("x1", out_grad).set_input(
1715 1716 1717
                        "x2", y_stack).set_attr_bool("adj_x1",
                                                     False).set_attr_bool(
                                                         "adj_x2", True)
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
                y_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "MatMul").set_input("x1", flatten_x).set_input(
                        "x2", flatten_out_grad).set_attr_bool(
                            "transpose_x1",
                            True).set_attr_bool("transpose_x2", False)

        return [x_grad, y_grad], [[0], [1]]


class ReluGradParser(AscendParserBase):
1729

1730 1731 1732 1733 1734 1735 1736 1737
    def __init__(self, graph, var2geop):
        super(ReluGradParser, self).__init__(graph, var2geop)
        self.parser_name = "relu_grad"

    def _apply(self):
        out = self._get_ge_input(self.op.input_arg_names[0])
        out_grad = self._get_ge_input(self.op.input_arg_names[1])
        relu_grad = core.GEOperatorFactory.create_operator(
1738 1739 1740
            self.parser_name + self._accumulated_op_id(),
            "ReluGrad").set_input("gradients",
                                  out_grad).set_input("features", out)
1741 1742 1743 1744
        return [relu_grad], [[0]]


class SoftmaxWithCrossEntropyGradParser(AscendParserBase):
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
    def __init__(self, graph, var2geop):
        super(SoftmaxWithCrossEntropyGradParser, self).__init__(graph, var2geop)
        self.parser_name = "softmax_with_cross_entropy_grad"

    def _apply(self):
        label = self._get_ge_input(self.op.input_arg_names[0])
        loss_grad = self._get_ge_input(self.op.input_arg_names[1])
        softmax = self._get_ge_input(self.op.input_arg_names[2])
        cls_num = self.op.block.var(self.op.input_arg_names[2]).shape[1]

        label_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        loss_grad_shape = self.op.block.var(self.op.input_arg_names[1]).shape
        softmax_shape = self.op.block.var(self.op.input_arg_names[2]).shape

        tensoron = self._create_ge_tensor([1], 5, 1)
        on = core.GEOperatorFactory.create_operator(
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensoron)
        tensoroff = self._create_ge_tensor([1], 5, 0)
        off = core.GEOperatorFactory.create_operator(
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensoroff)
        self._mark_as_input(on)
        self._mark_as_input(off)

        label = core.GEOperatorFactory.create_operator(
1772 1773
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", label).set_attr_int32("dst_type", 3)
1774
        onehot = core.GEOperatorFactory.create_operator(
1775 1776 1777 1778 1779
            "onehot" + self._accumulated_op_id(),
            "OneHotD").set_input("x",
                                 label).set_input("on_value", on).set_input(
                                     "off_value",
                                     off).set_attr_int32("depth", cls_num)
1780 1781 1782 1783
        squeeze = core.GEOperatorFactory.create_operator(
            "suqeeze" + self._accumulated_op_id(),
            "Squeeze").set_input("x", onehot)
        sub = core.GEOperatorFactory.create_operator(
1784 1785
            "sub" + self._accumulated_op_id(),
            "Sub").set_input("x1", softmax).set_input("x2", squeeze)
1786 1787 1788 1789 1790 1791 1792 1793
        grad = core.GEOperatorFactory.create_operator(
            "mul" + self._accumulated_op_id(),
            "Mul").set_input("x1", loss_grad).set_input("x2", sub)

        return [on, off, label, onehot, grad], [[-1]]


class DotMulGradParser(AscendParserBase):
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
    def __init__(self, graph, var2geop):
        super(DotMulGradParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_mul_grad"

    def _apply(self):
        out_grad = self._get_ge_input(self.op.input_arg_names[0])
        out_1 = self._get_ge_input(self.op.input_arg_names[1])
        out_2 = self._get_ge_input(self.op.input_arg_names[2])

        x_grad = core.GEOperatorFactory.create_operator(
            self.parser_name + self._accumulated_op_id(),
            "Mul").set_input("x1", out_grad).set_input("x2", out_2)
        y_grad = core.GEOperatorFactory.create_operator(
            self.parser_name + self._accumulated_op_id(),
            "Mul").set_input("x1", out_1).set_input("x2", out_grad)

        return [x_grad, y_grad], [[0], [1]]


class DotAddGradParser(AscendParserBase):
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
    def __init__(self, graph, var2geop):
        super(DotAddGradParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_add_grad"

    def _apply(self):
        out_grad = self._get_ge_input(self.op.input_arg_names[0])
        out_1 = self._get_ge_input(self.op.input_arg_names[1])
        out_2 = self._get_ge_input(self.op.input_arg_names[2])
        out_grad_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        out_1_shape = self.op.block.var(self.op.input_arg_names[1]).shape
        out_2_shape = self.op.block.var(self.op.input_arg_names[2]).shape

        x_grad = out_grad
        cur_time_x = len(out_grad_shape) - len(out_1_shape)
        for i in range(cur_time_x):
            x_grad = core.GEOperatorFactory.create_operator(
                self.parser_name + self._accumulated_op_id(),
                "ReduceSumD").set_input("x", x_grad).set_attr_vec_int32(
                    "axes", [0]).set_attr_bool("keep_dims", False)
        for axis, size in enumerate(out_1_shape):
            if size == 1:
                x_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "ReduceSumD").set_input("x", x_grad).set_attr_vec_int32(
                        "axes", [axis]).set_attr_bool("keep_dims", True)

        y_grad = out_grad
        cur_time_y = len(out_grad_shape) - len(out_2_shape)
        for i in range(cur_time_y):
            y_grad = core.GEOperatorFactory.create_operator(
                self.parser_name + self._accumulated_op_id(),
                "ReduceSumD").set_input("x", y_grad).set_attr_vec_int32(
                    "axes", [0]).set_attr_bool("keep_dims", False)
        for axis, size in enumerate(out_2_shape):
            if size == 1:
                y_grad = core.GEOperatorFactory.create_operator(
                    self.parser_name + self._accumulated_op_id(),
                    "ReduceSumD").set_input("x", y_grad).set_attr_vec_int32(
                        "axes", [axis]).set_attr_bool("keep_dims", True)

        return [x_grad, y_grad], [[0], [1]]


class DotDivGradParser(AscendParserBase):
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
    def __init__(self, graph, var2geop):
        super(DotDivGradParser, self).__init__(graph, var2geop)
        self.parser_name = "elementwise_div_grad"

    def _apply(self):
        out = self._get_ge_input(self.op.input_arg_names[0])
        out_grad = self._get_ge_input(self.op.input_arg_names[1])
        x = self._get_ge_input(self.op.input_arg_names[2])
        y = self._get_ge_input(self.op.input_arg_names[3])

        y_power = core.GEOperatorFactory.create_operator(
1872 1873
            "power" + self._accumulated_op_id(),
            "Power").set_input("x", y).set_attr_float("power", -1)
1874 1875 1876 1877 1878

        tensor_zeros = core.GEOperatorFactory.create_operator(
            "zeroslike" + self._accumulated_op_id(),
            "ZerosLike").set_input("x", x)
        x_zero = core.GEOperatorFactory.create_operator(
1879 1880
            "equal" + self._accumulated_op_id(),
            "Equal").set_input("x1", x).set_input("x2", tensor_zeros)
1881 1882 1883 1884
        x_nozero = core.GEOperatorFactory.create_operator(
            "logical_not" + self._accumulated_op_id(),
            "LogicalNot").set_input("x", x_zero)
        x_nozero_f = core.GEOperatorFactory.create_operator(
1885 1886
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", x_nozero).set_attr_int32("dst_type", 0)
1887
        x_grad_w = core.GEOperatorFactory.create_operator(
1888 1889
            "mul" + self._accumulated_op_id(),
            "Mul").set_input("x1", x_nozero_f).set_input("x2", y_power)
1890 1891 1892 1893 1894
        x_grad = core.GEOperatorFactory.create_operator(
            self.parser_name + self._accumulated_op_id(),
            "Mul").set_input("x1", x_grad_w).set_input("x2", out_grad)

        y_grad_w = core.GEOperatorFactory.create_operator(
1895 1896
            "mul" + self._accumulated_op_id(),
            "Mul").set_input("x1", out).set_input("x2", y_power)
1897
        y_grad = core.GEOperatorFactory.create_operator(
1898 1899
            "mul" + self._accumulated_op_id(),
            "Mul").set_input("x1", y_grad_w).set_input("x2", out_grad)
1900 1901 1902 1903 1904

        return [x_grad, y_grad], [[0], [1]]


class SoftmaxGradParser(AscendParserBase):
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
    def __init__(self, graph, var2geop):
        super(SoftmaxGradParser, self).__init__(graph, var2geop)
        self.parser_name = "softmax_grad"

    def _apply(self):
        out = self._get_ge_input(self.op.input_arg_names[0])
        out_grad = self._get_ge_input(self.op.input_arg_names[1])

        x_grad = core.GEOperatorFactory.create_operator(
            self.parser_name + self._accumulated_op_id(),
1916 1917
            "SoftmaxGrad").set_input("softmax",
                                     out).set_input("grad_softmax", out_grad)
1918 1919 1920 1921
        return [x_grad], [[0]]


class ReshapeGradParser(AscendParserBase):
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    def __init__(self, graph, var2geop):
        super(ReshapeGradParser, self).__init__(graph, var2geop)
        self.parser_name = "reshape2_grad"

    def _apply(self):
        out_grad = self._get_ge_input(self.op.input_arg_names[0])
        x_shape = self._get_ge_input(self.op.input_arg_names[1])
        x_shape_list = self.op.block.var(self.op.input_arg_names[1]).shape

        if x_shape_list[0] == 0:
            x_shape_delzero = x_shape_list[1:]
        tensor = self._create_ge_tensor([len(x_shape_delzero)], 2,
                                        x_shape_delzero)
        const_shape = core.GEOperatorFactory.create_operator(
            "shape" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", tensor)
        x_grad = core.GEOperatorFactory.create_operator(
1940 1941
            "reshape" + self._accumulated_op_id(),
            "Reshape").set_input("x", out_grad).set_input("shape", const_shape)
1942 1943

        return [x_grad], [[0]]
1944

1945 1946

class GatherGradParser(AscendParserBase):
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
    def __init__(self, graph, var2geop):
        super(GatherGradParser, self).__init__(graph, var2geop)
        self.parser_name = "gather_grad"

    def _apply(self):
        index = self._get_ge_input(self.op.input_arg_names[0])
        out_grad = self._get_ge_input(self.op.input_arg_names[1])
        x = self._get_ge_input(self.op.input_arg_names[2])

        index_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        out_grad_shape = self.op.block.var(self.op.input_arg_names[1]).shape
        x_shape = self.op.block.var(self.op.input_arg_names[2]).shape

        if len(index_shape) == 1:
            index = core.GEOperatorFactory.create_operator(
1963 1964 1965
                "unsqueeze" + self._accumulated_op_id(),
                "Unsqueeze").set_input("x",
                                       index).set_attr_vec_int32("axes", [1])
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

        tensor_zeros = core.GEOperatorFactory.create_operator(
            "zeroslike" + self._accumulated_op_id(),
            "ZerosLike").set_input("x", x)
        x_grad = core.GEOperatorFactory.create_operator(
            "scatter" + self._accumulated_op_id(),
            "TensorScatterUpdate").set_input("x", tensor_zeros).set_input(
                "indices", index).set_input("updates", out_grad)

        return [tensor_zeros, x_grad], [[-1]]


class TransposeGradParser(AscendParserBase):
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    def __init__(self, graph, var2geop):
        super(TransposeGradParser, self).__init__(graph, var2geop)
        self.parser_name = "transpose2_grad"

    def _apply(self):
        out_grad = self._get_ge_input(self.op.input_arg_names[0])
        x = self._get_ge_input(self.op.input_arg_names[1])
        perm = self.op.attr("axis")

        x_shape = self.op.block.var(self.op.input_arg_names[1]).shape[1:]
        out_grad_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        assert list(map(lambda x: out_grad_shape[x], perm)) == list(x_shape)

        x_grad = core.GEOperatorFactory.create_operator(
1994 1995 1996
            "transpose" + self._accumulated_op_id(),
            "TransposeD").set_input("x",
                                    out_grad).set_attr_vec_int32("perm", perm)
1997 1998 1999 2000 2001

        return [x_grad], [[0]]


class LayerNormGradParser(AscendParserBase):
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
    def __init__(self, graph, var2geop):
        super(LayerNormGradParser, self).__init__(graph, var2geop)
        self.parser_name = "layer_norm_grad"

    def _apply(self):
        bias = self._get_ge_input(self.op.input_arg_names[0])
        mean = self._get_ge_input(self.op.input_arg_names[1])
        scale = self._get_ge_input(self.op.input_arg_names[2])
        variance = self._get_ge_input(self.op.input_arg_names[3])
        x = self._get_ge_input(self.op.input_arg_names[4])
        out_grad = self._get_ge_input(self.op.input_arg_names[5])
        x_dtype = self.op.block.var(self.op.input_arg_names[4]).dtype

        x_grad = core.GEOperatorFactory.create_operator(
            self.parser_name + self._accumulated_op_id(),
            "LayerNormGrad").set_input("dy", out_grad).set_input(
2019 2020 2021
                "x", x).set_input("variance",
                                  variance).set_input("mean", mean).set_input(
                                      "gamma", scale)
2022 2023 2024 2025

        cast_dtype = 0 if self.ascend_helper.dtype2paddle_inv_map[str(
            x_dtype)] == 0 else 1
        out_x_grad = core.GEOperatorFactory.create_operator(
2026 2027 2028
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", x_grad,
                              0).set_attr_int32("dst_type", cast_dtype)
2029
        out_scale_grad = core.GEOperatorFactory.create_operator(
2030 2031 2032
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", x_grad,
                              1).set_attr_int32("dst_type", cast_dtype)
2033
        out_bias_grad = core.GEOperatorFactory.create_operator(
2034 2035 2036
            "cast" + self._accumulated_op_id(),
            "Cast").set_input("x", x_grad,
                              2).set_attr_int32("dst_type", cast_dtype)
2037 2038 2039 2040 2041

        return [out_x_grad, out_scale_grad, out_bias_grad], [[2], [1], [0]]


class TanhGradParser(AscendParserBase):
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
    def __init__(self, graph, var2geop):
        super(TanhGradParser, self).__init__(graph, var2geop)
        self.parser_name = 'tanh_grad'

    def _apply(self):
        y = self._get_ge_input(self.op.input_arg_names[0])
        out_grad = self._get_ge_input(self.op.input_arg_names[1])
        tanh_grad = core.GEOperatorFactory.create_operator(
            "tanh_grad" + self._accumulated_op_id(),
            "TanhGrad").set_input("y", y).set_input("dy", out_grad)

        return [tanh_grad], [[0]]


class LogGradParser(AscendParserBase):
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
    def __init__(self, graph, var2geop):
        super(LogGradParser, self).__init__(graph, var2geop)
        self.parser_name = 'log_grad'

    def _apply(self):
        grad = self._get_ge_input(self.op.input_arg_names[0])
        input = self._get_ge_input(self.op.input_arg_names[1])
        log_grad = core.GEOperatorFactory.create_operator(
            "log_grad" + self._accumulated_op_id(),
            "DivNoNan").set_input("x1", grad).set_input("x2", input)
        return [log_grad], [[0]]


class SqrtGradParser(AscendParserBase):
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
    def __init__(self, graph, var2geop):
        super(SqrtGradParser, self).__init__(graph, var2geop)
        self.parser_name = "sqrt_grad"

    def _apply(self):
        y = self._get_ge_input(self.op.input_arg_names[0])
        out_grad = self._get_ge_input(self.op.input_arg_names[1])
        sqrt_grad = core.GEOperatorFactory.create_operator(
            "sqrt_grad" + self._accumulated_op_id(),
            "SqrtGrad").set_input("y", y).set_input("dy", out_grad)
        return [sqrt_grad]


class PowGradParser(AscendParserBase):
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    def __init__(self, graph, var2geop):
        super(PowGradParser, self).__init__(graph, var2geop)
        self.parser_name = "pow_grad"

    def _apply(self):
        grad = self._get_ge_input(self.op.input_arg_names[0])
        x = self._get_ge_input(self.op.input_arg_names[1])
        factor = self.op.attr("factor")

        shape_tensor = self._create_shape_tensor()
        shape_tensor = core.GEOperatorFactory.create_operator(
            "shape" + self._accumulated_op_id(), "Shape").set_input("x", x)
        factor_scale = self._create_ge_tensor([1], 5, factor)
        factor_scale = core.GEOperatorFactory.create_operator(
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value", factor_scale)
        factor_tensor = core.GEOperatorFactory.create_operator(
            "broadcast_to_d" + self._accumulated_op_id(),
2107 2108
            "BroadcastTo").set_input("x", factor_scale).set_input(
                "shape", shape_tensor)
2109 2110

        x_power = core.GEOperatorFactory.create_operator(
2111 2112
            "x_power" + self._accumulated_op_id(),
            "Power").set_input("x", x).set_attr_float("power", factor - 1)
2113
        x_power_mul_factor = core.GEOperatorFactory.create_operator(
2114 2115
            "x_power_mul_factor" + self._accumulated_op_id(),
            "Mul").set_input("x1", x).set_input("x2", factor_tensor)
2116 2117 2118 2119 2120 2121 2122 2123
        x_power_mul_factor_grad = core.GEOperatorFactory.create_operator(
            "x_power_mul_factor_grad" + self._accumulated_op_id(),
            "Mul").set_input("x1", x_power_mul_factor).set_input("x2", grad)

        return [x_power_mul_factor_grad], [[0]]


class GeluGradParser(AscendParserBase):
2124

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
    def __init__(self, graph, var2geop):
        super(GeluGradParser, self).__init__(graph, var2geop)
        self.parser_name = "gelu_grad"

    def _apply(self):
        grad = self._get_ge_input(self.op.input_arg_names[0])
        x = self._get_ge_input(self.op.input_arg_names[1])

        y = core.GEOperatorFactory.create_operator(
            "gelu" + self._accumulated_op_id(), "Gelu").set_input("x", x)
        gelu_grad = core.GEOperatorFactory.create_operator(
2136 2137 2138
            "gelu_grad" + self._accumulated_op_id(),
            "GeluGrad").set_input("x", x).set_input("dy",
                                                    grad).set_input("y", y)
2139 2140 2141 2142 2143

        return [gelu_grad], [[0]]


class MeanGradParser(AscendParserBase):
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
    def __init__(self, graph, var2geop):
        super(MeanGradParser, self).__init__(graph, var2geop)
        self.parser_name = "mean_grad"

    def _apply(self):
        grad = self._get_ge_input(self.op.input_arg_names[0])
        x = self._get_ge_input(self.op.input_arg_names[1])

        ones_tensor = core.GEOperatorFactory.create_operator(
            "one_tensor" + self._accumulated_op_id(),
            "OnesLike").set_input("x", x)
        sum = core.GEOperatorFactory.create_operator(
2157 2158 2159
            "mean" + self._accumulated_op_id(),
            "ReduceSumD").set_input("x", ones_tensor).set_attr_bool(
                "keep_dims", False).set_attr_vec_int32("axes", [])
2160
        mean = core.GEOperatorFactory.create_operator(
2161 2162
            "x_power" + self._accumulated_op_id(),
            "Power").set_input("x", sum).set_attr_float("power", -1)
2163 2164 2165 2166 2167 2168 2169 2170 2171

        mean_grad = core.GEOperatorFactory.create_operator(
            "mean_grad" + self._accumulated_op_id(),
            "Mul").set_input("x1", mean).set_input("x2", grad)

        return [mean_grad], [[0]]


class SliceGradParser(AscendParserBase):
2172

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
    def __init__(self, graph, var2geop):
        super(SliceGradParser, self).__init__(graph, var2geop)
        self.parser_name = "slice_grad"

    def _apply(self):
        x = self._get_ge_input(self.op.input_arg_names[0])
        grad = self._get_ge_input(self.op.input_arg_names[1])
        axes = self.op.attr("axes")
        starts = self.op.attr("starts")
        ends = self.op.attr("ends")

        x_shape = self.op.block.var(self.op.input_arg_names[0]).shape
        grad_shape = self.op.block.var(self.op.input_arg_names[1]).shape

        len_shape = len(x_shape)
        axes_cor = list(range(len_shape))
        starts_cor, ends_cor = [], []
        cnt = 0
        for i in range(len_shape):
            starts_cor.append(starts[cnt] if i in axes else 0)
            if i in axes and ends[cnt] <= x_shape[i]:
                ends_cor.append(x_shape[i] - ends[cnt])
            else:
                ends_cor.append(0)
            if i in axes:
                cnt += 1

        starts_cor[0] = 0
        ends_cor[0] = 0
        paddings = [[s, e] for (s, e) in zip(starts_cor, ends_cor)]
        slice_value = core.GEOperatorFactory.create_operator(
            "slice_grad" + self._accumulated_op_id(), "PadD").set_input(
                "x", grad).set_attr_vec_vec_int64("paddings", paddings)

        return [slice_value], [[0]]


class LookUpTableGradParser(AscendParserBase):
2211

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
    def __init__(self, graph, var2geop):
        super(LookUpTableGradParser, self).__init__(graph, var2geop)
        self.parser_name = "lookup_table_grad"

    def _apply(self):
        ids = self._get_ge_input(self.op.input_arg_names[0])
        grad = self._get_ge_input(self.op.input_arg_names[1])
        embedding = self._get_ge_input(self.op.input_arg_names[2])

        shape_ids = self.op.block.var(self.op.input_arg_names[0]).shape
        shape_grad = self.op.block.var(self.op.input_arg_names[1]).shape
        shape_embedding = self.op.block.var(self.op.input_arg_names[2]).shape

        ids_flatten = core.GEOperatorFactory.create_operator(
            "flatten" + self._accumulated_op_id(), "FlattenV2").set_input(
2227 2228
                "x", ids).set_attr_int32("axis",
                                         0).set_attr_int32("end_axis", 1)
2229 2230
        grad_flatten = core.GEOperatorFactory.create_operator(
            "flatten" + self._accumulated_op_id(), "FlattenV2").set_input(
2231 2232
                "x", grad).set_attr_int32("axis",
                                          0).set_attr_int32("end_axis", 1)
2233 2234 2235 2236 2237 2238

        tensor_zeros = core.GEOperatorFactory.create_operator(
            "zeroslike" + self._accumulated_op_id(),
            "ZerosLike").set_input("x", embedding)
        embedding_grad = core.GEOperatorFactory.create_operator(
            "scatteradd" + self._accumulated_op_id(),
2239 2240
            "TensorScatterAdd").set_input("x", tensor_zeros).set_input(
                "indices", ids_flatten).set_input("updates", grad_flatten)
2241 2242 2243 2244 2245

        return [embedding_grad], [[0]]


class SGDParser(AscendParserBase):
2246

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
    def __init__(self, graph, var2geop):
        super(SGDParser, self).__init__(graph, var2geop)
        self.parser_name = "sgd"

    def _apply(self):
        grad = self._get_ge_input(self.op.input_arg_names[0])
        lr = self._get_ge_input(self.op.input_arg_names[1])
        param = self._get_ge_input(self.op.input_arg_names[2])
        sgd = core.GEOperatorFactory.create_operator(
            "momentum" + self._accumulated_op_id(),
            "ApplyGradientDescent").set_input("var", param).set_input(
                "alpha", lr).set_input("delta", grad)
        return [sgd], [[0]]


class AdamParser(AscendParserBase):
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
    def __init__(self, graph, var2geop):
        super(AdamParser, self).__init__(graph, var2geop)
        self.parser_name = "adam"

    def _apply(self):
        beta1_power = self._get_ge_input(self.op.input_arg_names[0])
        beta2_power = self._get_ge_input(self.op.input_arg_names[1])
        grad = self._get_ge_input(self.op.input_arg_names[2])
        lr = self._get_ge_input(self.op.input_arg_names[3])
        moment1 = self._get_ge_input(self.op.input_arg_names[4])
        moment2 = self._get_ge_input(self.op.input_arg_names[5])
        param = self._get_ge_input(self.op.input_arg_names[6])
        beta1 = self.op.attr('beta1')
        beta2 = self.op.attr('beta2')
        epsilon = self.op.attr('epsilon')

        beta1 = core.GEOperatorFactory.create_operator(
2281 2282 2283
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value",
                                     self._create_ge_tensor([1], 5, beta1))
2284
        beta2 = core.GEOperatorFactory.create_operator(
2285 2286 2287
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value",
                                     self._create_ge_tensor([1], 5, beta2))
2288
        epsilon = core.GEOperatorFactory.create_operator(
2289 2290 2291
            "const" + self._accumulated_op_id(),
            "Const").set_attr_tensor("value",
                                     self._create_ge_tensor([1], 5, epsilon))
2292 2293 2294 2295 2296 2297

        adam = core.GEOperatorFactory.create_operator(
            "adam" + self._accumulated_op_id(),
            "ApplyAdam").set_input("var", param).set_input(
                "m", moment1).set_input("v", moment2).set_input(
                    "beta1_power", beta1_power).set_input(
2298 2299 2300 2301
                        "beta2_power",
                        beta2_power).set_input("lr", lr).set_input(
                            "beta1", beta1).set_input("beta2", beta2).set_input(
                                "epsilon", epsilon).set_input("grad", grad)
2302 2303

        return [adam], [[0]]