dist_softmax.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18
from .common import register_distributed_operator_impl
C
caozhou 已提交
19
from .common import is_parameter_related
20 21
from ..utils import is_dim_shard
from ..utils import compute_compatible_and_update_dim_mapping
22
from .dist_default import DistributedDefaultImpl0
C
caozhou 已提交
23 24 25 26
from ..cost import build_comp_desc_from_dist_op, build_dp_costs
from ..cost import build_comp_costs_from_descs
from ..cost import SoftmaxOpCost, SoftmaxGradOpCost
from paddle.distributed.fleet.meta_optimizers.common import OpRole
27 28


29
class DistributedSoftmax(DistributedOperatorImplContainer):
30

31 32
    def __init__(self, op_type):
        super(DistributedSoftmax, self).__init__(op_type)
33 34


35
register_distributed_operator_impl_container(DistributedSoftmax("softmax"))
36 37 38


class DistributedSoftmaxImpl(DistributedOperatorImpl):
39

40
    def __init__(self, name):
41
        super(DistributedSoftmaxImpl, self).__init__(name)
42
        self._forward_implemented = False
43
        self._backward_implemented = False
44

C
caozhou 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        else:
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(SoftmaxOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)

        res_cost = [cost_mapping]
        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        res = []
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(SoftmaxGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        backward_op = dist_op.serial_op
        main_block = backward_op.block
        need_gradient_allreduce = False
        vars = main_block.vars
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and is_parameter_related(
                        varname, main_block):
                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        parallel_axis = batch_size_axis
                        attrs = {"use_calc_stream": True}
                        var_names = [varname + "@GRAD"]
                        build_dp_costs(res, dist_op, ctx, var_names, attrs,
                                       parallel_axis, cluster)

        return res

101 102 103
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
104 105 106 107
        x_name = op_desc.input('X')[0]
        axis = op_desc.attr('axis')
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)

108 109
        # if axis != -1 and axis != len(x_dims_mapping) - 1:
        #     return False
110 111 112 113 114 115

        if is_dim_shard(x_dims_mapping[axis]):
            return False

        return True

116 117 118
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
119 120 121 122
        out_name = op_desc.output('Out')[0]
        axis = op_desc.attr('axis')
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

123 124
        # if axis != -1 and axis != len(out_dims_mapping) - 1:
        #     return False
125 126 127 128 129 130

        if is_dim_shard(out_dims_mapping[axis]):
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
131
    def is_auto_compatible(self, dist_op):
132 133 134 135
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
136 137 138 139 140 141 142
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        axis = op_desc.attr('axis')
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
143 144
        # if axis != -1 and axis != len(x_dims_mapping) - 1:
        #     return False
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
145 146 147 148 149 150

        if x_dims_mapping != out_dims_mapping:
            return False

        return True

151
    def update_dims_mapping(self, dist_op):
152
        changed = False
153 154
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
155 156 157 158 159 160 161 162 163 164 165 166 167
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        for i in range(len(x_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        return changed

168 169 170 171
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

172 173
    @staticmethod
    def backward(ctx, *args, **kwargs):
174
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
175

176 177 178

register_distributed_operator_impl(
    "softmax", DistributedSoftmaxImpl("replicate_last_axis"))