dist_saver.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import re
import os
import errno
import pickle
import logging
import numpy as np
import paddle

from paddle import fluid
from paddle.fluid import core
from .utils import get_dist_attr
from .process_group import _g_process_group_map
R
Roc 已提交
27
from ..utils.log_utils import get_logger
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52


def check_filename(re_exp, filename):
    if re.search(re_exp, filename):
        return True
    else:
        return False


def _process_path(path):
    filename = os.path.basename(path)
    if filename == "":
        raise ValueError(
            "path should be of 'dirname/filename' format, but received filename is empty string"
        )
    try:
        dirname = os.path.dirname(path)
        os.makedirs(dirname)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise
    return dirname, filename


class DistributedSaver:
53

54 55 56 57 58
    def __init__(self):
        self._logger = get_logger(logging.INFO)

    def save(self, path, serial_program, dist_main_program, dist_context):

59 60 61 62 63 64 65 66
        def _save_state(program, path, mode="param"):
            state = {
                k: np.array(v)
                for k, v in program.state_dict(mode).items()
            }
            with open(path, "wb") as f:
                pickle.dump(state, f)

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        dirname, filename = _process_path(path)

        rank_id = paddle.distributed.get_rank()
        # save serial program when rank id is 0
        if rank_id == 0:
            self._save_rank_mapping(dirname)
            serial_model_filename = filename + "_serial.pdmodel"
            serial_model_path = os.path.join(dirname, serial_model_filename)
            with open(serial_model_path, "wb") as f:
                f.write(serial_program.desc.serialize_to_string())

        # save distributed main program
        dist_model_filename = filename + "_dist" + str(rank_id) + ".pdmodel"
        dist_model_path = os.path.join(dirname, dist_model_filename)
        with open(dist_model_path, "wb") as f:
            f.write(dist_main_program.desc.serialize_to_string())

        # save distributed attribute
        dist_attr_filename = filename + "_dist" + str(rank_id) + ".pdattr"
        dist_attr_path = os.path.join(dirname, dist_attr_filename)
        dist_attrs = get_dist_attr(dist_main_program, dist_context)
        with open(dist_attr_path, "wb") as f:
            pickle.dump(dist_attrs, f)

91 92 93 94 95 96 97 98 99 100
        # save distributed params
        dist_param_filename = filename + "_dist" + str(rank_id) + ".pdparams"
        dist_param_path = os.path.join(dirname, dist_param_filename)
        _save_state(dist_main_program, dist_param_path)

        # save distributed opt states
        dist_opt_filename = filename + "_dist" + str(rank_id) + ".pdopt"
        dist_opt_path = os.path.join(dirname, dist_opt_filename)
        _save_state(dist_main_program, dist_opt_path, "opt")

101 102
        # TODO:save cluster.json

103
    def load(self, path, load_optimizer=True):
104
        # TODO: if `program` is None, load `path.pdmodel`.
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        def _load_file(filename, dirname, suffix="pdparams"):
            file_list = []
            for file in os.listdir(dirname):
                if check_filename('{}(.*)_dist(.*).{}'.format(filename, suffix),
                                  file):
                    file_list.append(os.path.join(dirname, file))
            file_list.sort()
            return file_list

        def _load_state(filename, dirname, suffix="pdparams"):
            file_list = _load_file(filename, dirname, suffix)
            state_dict = {}
            for file in file_list:
                with open(file, 'rb') as f:
                    state_dict_info = pickle.load(f, encoding='latin1')
                for name, value in state_dict_info.items():
                    if name in state_dict:
                        state_dict[name].append(np.array(value))
                    else:
                        state_dict[name] = [np.array(value)]
            self._logger.info("Load param file: {}".format(file_list))
            return state_dict

128 129 130 131 132 133
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "path should be of 'dirname/filename' format, but received filename is empty string"
            )
        dirname = os.path.dirname(path)
134 135 136 137 138 139

        # load path.pdparam and path.pdopt
        param_state_dict = _load_state(filename, dirname)
        opt_state_dict = _load_state(filename, dirname,
                                     "pdopt") if load_optimizer else {}
        state_dict = dict(param_state_dict, **opt_state_dict)
140 141

        # load path.pdattr
142
        dist_attr_file_list = _load_file(filename, dirname, "pdattr")
143 144
        self._logger.info(
            "Load distributed attribute file: {}".format(dist_attr_file_list))
145
        dist_attr = {}
146 147
        for dist_attr_file in dist_attr_file_list:
            with open(dist_attr_file, 'rb') as f:
148 149 150 151 152 153
                dist_attr_info = pickle.load(f, encoding='latin1')
            for name, attr in dist_attr_info.items():
                if name not in dist_attr:
                    dist_attr[name] = attr

        return state_dict, dist_attr
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

    def save_inference_model(self, path, feed_vars, fetch_vars, exe, **kwargs):

        dirname, filename = _process_path(path)

        # save distributed inference program
        rank_id = paddle.distributed.get_rank()
        if rank_id == 0:
            self._save_rank_mapping(dirname)
        op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()
        op_role_forward = int(core.op_proto_and_checker_maker.OpRole.Forward)

        dist_main_prog = kwargs.get('program', None)
        if not dist_main_prog:
            dist_main_prog = fluid.default_main_program()
        global_block = dist_main_prog.global_block()

        ops = global_block.ops
        feed_vars_names = list(map(lambda x: x.name, feed_vars))
        fetch_vars_names = list(map(lambda x: x.name, fetch_vars))

        last_idx = -1
        for idx, op in enumerate(ops):
            if op.attr(op_role_key) != op_role_forward:
                continue
            if op.type == "read" or op.type == "feed" or op.type == 'recv_v2':
                feed_vars_names += op.output("Out")
            if op.type == "send_v2":
                fetch_vars_names += op.input("X")
                last_idx = max(idx, last_idx)
            for out_name in op.output_arg_names:
                if out_name in fetch_vars_names:
                    last_idx = max(idx, last_idx)

        used_inputs = []
        used_outputs = []
        for idx, op in enumerate(ops):
            if idx > last_idx:
                break
            used_inputs += op.input_arg_names
            used_outputs += op.output_arg_names

        dist_feed_vars_names = list(set(feed_vars_names) & set(used_inputs))
        dist_fetch_vars_names = list(set(fetch_vars_names) & set(used_outputs))

        dist_feed_vars = [
            global_block.vars[name] for name in dist_feed_vars_names
        ]
        dist_fetch_vars = [
            global_block.vars[name] for name in dist_fetch_vars_names
        ]

        # NOTE: `paddle.static.save_inference_model` does not support subblock.
        dist_filename = filename + "_dist" + str(rank_id)
        dist_path = os.path.join(dirname, dist_filename)
209 210 211 212 213
        paddle.static.save_inference_model(dist_path,
                                           dist_feed_vars,
                                           dist_fetch_vars,
                                           exe,
                                           program=dist_main_prog)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

    def _save_rank_mapping(self, dirname):
        path = os.path.join(dirname, 'rank_mapping.csv')
        f = open(path, 'w')
        f.write('[ring_id -> ranks]\n')
        for process_group in _g_process_group_map.values():
            ring_id = process_group._group_id
            ranks = [str(rank) for rank in process_group._ranks]
            id_to_rank = str(ring_id) + "," + ",".join(ranks) + '\n'
            f.write(id_to_rank)
            id_to_rank = ""
        f.write('[rank -> ring_ids]\n')
        rank_to_id_dict = {}
        for process_group in _g_process_group_map.values():
            ring_id = process_group._group_id
            for rank in process_group._ranks:
                if rank in rank_to_id_dict:
                    rank_to_id_dict[rank].append(str(ring_id))
                else:
                    rank_to_id_dict[rank] = [str(ring_id)]
        rank_to_id = ""
        for item, val in rank_to_id_dict.items():
            rank_to_id += str(item) + ","
            rank_to_id += ",".join(val) + "\n"
            f.write(rank_to_id)
            rank_to_id = ""
        f.close()