estimate_cost.py 17.3 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15 16 17 18 19 20 21 22 23 24
from collections import OrderedDict
from functools import reduce

import paddle
from paddle.distributed.fleet.meta_optimizers.common import OpRole

from .base_cost import Cost
from ..operators.common import get_distributed_operator_impl_container
from ..dist_tensor import DistributedTensor

25 26

class CostEstimator:
27
    _sepical_op_type = ["fused_attention", "fused_feedforward"]
28

29 30
    def __init__(self,
                 program,
31 32 33 34
                 cluster,
                 mode="modeling",
                 rank=None,
                 loop_count=10):
35 36 37 38
        self._program = program
        self._cluster = cluster
        self._check_mode(mode)
        self._mode = mode
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        self._rank = rank if rank is not None else paddle.distributed.get_rank()
        self._loop_count = loop_count
        self._global_cost = Cost()
        self._local_cost_mapping = {}
        self._detailed_cost = OrderedDict(
        )  # {`op_id`: {"reshard": [], "dist_op": [], "local_cost": local_cost}}}
        self._bubble_time_mapping = {}
        self._ordered_ops = []

    @property
    def loop_count(self):
        return self._loop_count

    @property
    def detailed_cost(self):
        return self._detailed_cost
55 56 57 58 59

    @property
    def program(self):
        return self._program

60 61 62 63
    @property
    def rank(self):
        return self._rank

64 65 66 67 68 69 70 71 72 73 74 75 76 77
    @property
    def dist_context(self):
        return self._dist_context

    @property
    def cluster(self):
        return self._cluster

    @property
    def mode(self):
        return self._mode

    @property
    def global_cost(self):
78 79 80 81 82 83 84 85 86 87 88 89
        max_time = 0
        memory = 0
        flops = 0
        for rank in self._local_cost_mapping:
            cost = self._local_cost_mapping[rank]
            if cost.time > max_time:
                max_time = cost.time
            memory += cost.memory
            flops += cost.flops
        self._global_cost.time = max_time
        self._global_cost.memory = memory
        self._global_cost.flops = flops
90 91
        return self._global_cost

92 93 94 95
    def local_cost(self, rank=None):
        rank = self.rank if rank is None else rank
        if rank not in self._local_cost_mapping:
            self._local_cost_mapping[rank] = Cost()
96

97
        return self._local_cost_mapping[rank]
98

99 100 101
    def local_bubble_time(self, rank=None):
        rank = self.rank if rank is None else rank
        return self._bubble_time_mapping[rank]
102 103 104 105 106

    def _check_mode(self, mode):
        if mode not in ["modeling", "profiling"]:
            raise ValueError(
                "Just support modeling and profiling, but got {}".format(mode))
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

    def _is_special_var_name(self, var_name):
        special_var_name = ["lod_tensor_blocking_queue_0"]
        if var_name in special_var_name:
            return True
        return False

    def _estimate_core(self, dist_context, resharder, block):
        from ..reshard import get_var_with_recursion
        ops = block.ops
        loop_count = None
        if block.desc.id != self.program.global_block().desc.id:
            loop_count = self.loop_count
        else:
            loop_count = 1
        for i in range(loop_count):
            for op in ops:
                self._detailed_cost[op.desc.id()] = OrderedDict()
                # if in the while sub block, the detail of cost is the last cost
                detail = self._detailed_cost[op.desc.id()]
                detail["reshard_cost"] = OrderedDict()  #
                detail["dist_op_cost"] = []
                if int(op.attr('op_role')) == int(OpRole.Optimize):
                    continue
                if op.type in [
                        "create_py_reader", "create_double_buffer_reader",
                        "read"
                ]:
                    continue

                # NOTE: It does not support nested loop and just supports while op when op has sub block now.
                if op.type == "while":
                    while_block = self.program.blocks[op.attr("sub_block").id]
                    self._estimate_core(dist_context, resharder, while_block)
                    continue

                for var_name in op.input_arg_names:
                    if self._is_special_var_name(var_name):
                        continue
                    var = get_var_with_recursion(var_name, block, self.program)
                    reshard_cost = resharder.get_cost(op, var, self.cluster)

                    # calc reshard cost
                    if reshard_cost is not None:
                        detail["reshard_cost"][var_name] = reshard_cost

                        comm_costs = reshard_cost[0]
                        local_comp_cost = reshard_cost[1]
                        for comm_cost in comm_costs:
                            # time is cumulative in global cost and local cost, but memory and flops just are cumulative in global cost.
                            # comm sync
                            for item in comm_cost:
                                group_ranks, cost = item
                                max_time = None
                                cost_time = {}
                                for rank in group_ranks:
                                    rank_cost = self.local_cost(rank)
                                    cost_time[rank] = rank_cost.time
                                    if max_time is None:
                                        max_time = rank_cost.time
                                    else:
                                        if max_time < rank_cost.time:
                                            max_time = rank_cost.time

                                for rank in group_ranks:
                                    self.local_cost(
                                        rank).time = max_time + cost.time

                                    if rank not in self._bubble_time_mapping:
                                        self._bubble_time_mapping[rank] = 0

                                    self._bubble_time_mapping[rank] += (
                                        max_time - cost_time[rank])

                        for rank in local_comp_cost:
                            for comp_cost in local_comp_cost[rank]:
                                self.local_cost(rank).time += comp_cost.time

                # calc dist op cost
                dist_op = dist_context.get_dist_op_for_program(op)
                op_dist_attr = dist_op.dist_attr
                processes = op_dist_attr.process_mesh.processes

                container = get_distributed_operator_impl_container(
                    op_dist_attr.impl_type)
                dist_impl = container.impls[op_dist_attr.impl_idx]

                dist_op_cost = dist_impl.calc_cost(op.attr('op_role'), dist_op,
                                                   dist_context, self.cluster)
                detail["dist_op_cost"] = dist_op_cost

                if dist_op_cost is None:
                    assert dist_op.serial_op.type in CostEstimator._sepical_op_type
                    continue
                for item in dist_op_cost:
                    if isinstance(item, list):
                        # comm sync
                        for comm_op_cost in item:
                            max_time = None
                            cost_time = {}
                            group_ranks = comm_op_cost.group_ranks
                            for rank in comm_op_cost.group_ranks:
                                rank_cost = self.local_cost(rank)
                                cost_time[rank] = rank_cost.time
                                if max_time is None:
                                    max_time = rank_cost.time
                                else:
                                    if max_time < rank_cost.time:
                                        max_time = rank_cost.time
                            for rank in group_ranks:
                                self.local_cost(
                                    rank).time = max_time + comm_op_cost.time
                                if rank not in self._bubble_time_mapping:
                                    self._bubble_time_mapping[rank] = 0
                                self._bubble_time_mapping[rank] += (
                                    max_time - cost_time[rank])
                    elif isinstance(item, dict):
                        # op just one
                        for rank in processes:
                            # dp+pp+mp
                            if rank not in item:
                                continue
                            self.local_cost(rank).time += item[rank].time

    def prepare(self):
        self._global_cost = Cost()
        self._local_cost_mapping = {}
        self._detailed_cost = OrderedDict()
        self._bubble_time_mapping = {}

    def _calculate_bytes(self, sizes, dtype):
        if sizes:
            total_count = reduce(lambda x, y: x * y, sizes)
        else:
            total_count = 0

        if dtype == paddle.float64 or dtype == paddle.int64:
            dtype_factor = 8
        elif dtype == paddle.float32 or dtype == paddle.int32:
            dtype_factor = 4
        elif dtype == paddle.float16 or dtype == paddle.bfloat16 \
            or dtype == paddle.int16:
            dtype_factor = 2
        elif dtype == paddle.int8 or dtype == paddle.uint8:
            dtype_factor = 1
        else:
            dtype_factor = 8

        memory = total_count * dtype_factor
        return memory

    def _estimate_max_memory_by_dist_op(self, dist_context):
        # This estimation will be improved, now reshard and inplace are not considered.
        # Persist var is not free.
        def _convert_pm_and_dm_to_str(process_mesh, dims_mapping):
            processes = ",".join([str(x) for x in process_mesh.processes])
            topology = ",".join([str(x) for x in process_mesh.topology])
            dims_mapping = ",".join([str(x) for x in dims_mapping])
            result = processes + topology + dims_mapping
            return result

        memories = {}
        max_memories = {}
        var_info = {
        }  # var_name: [[process_mesh, dims_mapping], [id]], [[process_mesh, dims_mapping], [id]]}

        for block in self.program.blocks:
            for op in block.ops:
                self._ordered_ops.append([op.desc.id(), op])
        self._ordered_ops.sort(key=lambda x: x[0])

        for op_id, op in self._ordered_ops:
            dist_op = dist_context.get_dist_op_for_program(op)
            process_mesh = dist_op.dist_attr.process_mesh
            for var_name in op.input_arg_names:
                input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
                    var_name)
                if var_name not in var_info:
                    var_info[var_name] = {}
                key = _convert_pm_and_dm_to_str(process_mesh,
                                                input_dims_mapping)
                if key not in var_info[var_name]:
                    var_info[var_name][key] = {}
                # it is even partition now
                if "memory" not in var_info[var_name][key]:
                    var = dist_op.get_serial_input(var_name)
                    global_sizes = var.shape
                    dtype = var.dtype
                    sizes = DistributedTensor.get_local_sizes(
                        global_sizes, input_dims_mapping, process_mesh.topology,
                        process_mesh.processes)
                    var_info[var_name][key]["memory"] = self._calculate_bytes(
                        sizes, dtype)
                if "position" not in var_info[var_name][key]:
                    var_info[var_name][key]["position"] = []
                var_info[var_name][key]["position"].append(op_id)

            for var_name in op.output_arg_names:
                output_dims_mapping = dist_op.dist_attr.get_output_dims_mapping(
                    var_name)
                if var_name not in var_info:
                    var_info[var_name] = {}
                key = _convert_pm_and_dm_to_str(process_mesh,
                                                output_dims_mapping)
                if key not in var_info[var_name]:
                    var_info[var_name][key] = {}
                if "memory" not in var_info[var_name][key]:
                    var = dist_op.get_serial_output(var_name)
                    global_sizes = var.shape
                    dtype = var.dtype
                    sizes = DistributedTensor.get_local_sizes(
                        global_sizes, output_dims_mapping,
                        process_mesh.topology, process_mesh.processes)
                    var_info[var_name][key]["memory"] = self._calculate_bytes(
                        sizes, dtype)
                if "position" not in var_info[var_name][key]:
                    var_info[var_name][key]["position"] = []
                var_info[var_name][key]["position"].append(op_id)

        has_used_vars = set()
        for op_id, op in self._ordered_ops:
            can_free_memories = {}
            can_free_vars = set()
            dist_op = dist_context.get_dist_op_for_program(op)
            process_mesh = dist_op.dist_attr.process_mesh
            for var_name in op.input_arg_names:
                input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
                    var_name)
                key = _convert_pm_and_dm_to_str(process_mesh,
                                                input_dims_mapping)
                has_used_var = var_name + key
                var = dist_op.get_serial_input(var_name)
                # not used
                if var_name + key not in has_used_vars:
                    has_used_vars.add(has_used_var)
                    for process in process_mesh.processes:
                        if process not in memories:
                            memories[process] = 0
                        memories[process] += var_info[var_name][key]["memory"]
                # used
                else:
                    if op_id == var_info[var_name][key]["position"][-1]:
                        if has_used_var not in can_free_vars:
                            can_free_vars.add(has_used_var)
                            if not var.persistable:
                                for process in process_mesh.processes:
                                    if process not in can_free_memories:
                                        can_free_memories[process] = 0
                                    can_free_memories[process] += var_info[
                                        var_name][key]["memory"]

            for var_name in op.output_arg_names:
                output_dims_mapping = dist_op.dist_attr.get_output_dims_mapping(
                    var_name)
                key = _convert_pm_and_dm_to_str(process_mesh,
                                                output_dims_mapping)
                has_used_var = var_name + key
                var = dist_op.get_serial_output(var_name)
                # not used
                if var_name + key not in has_used_vars:
                    has_used_vars.add(has_used_var)
                    for process in process_mesh.processes:
                        if process not in memories:
                            memories[process] = 0
                        memories[process] += var_info[var_name][key]["memory"]
                # used
                else:
                    if op_id == var_info[var_name][key]["position"][-1]:
                        if has_used_var not in can_free_vars:
                            can_free_vars.add(has_used_var)
                            if not var.persistable:
                                for process in process_mesh.processes:
                                    if process not in can_free_memories:
                                        can_free_memories[process] = 0
                                    can_free_memories[process] += var_info[
                                        var_name][key]["memory"]

            # calc peak memory
            for process in memories:
                if process not in max_memories:
                    max_memories[process] = memories[process]
                else:
                    if memories[process] > max_memories[process]:
                        max_memories[process] = memories[process]

            # free memory
            for process in can_free_memories:
                if process in memories:
                    memories[process] -= can_free_memories[process]

        # Calculate the max memory in all ranks
        max_memory = max(max_memories.values())

        return max_memory

    def estimate(self, dist_context, resharder=None):
        self.prepare()
        from ..reshard import Resharder
        resharder = Resharder(self.program, None, self.rank, dist_context,
                              []) if resharder is None else resharder

        block = self.program.global_block()
        self._estimate_core(dist_context, resharder, block)

        return self.global_cost